WAP™ WSsP

WAP-203-WSP
Approved Version 4-May-2000

Wireless Application Protocol
Wireless Session Protocol Specification

© Wireless Application Protocol Forum Ltd.2000. Terms and conditions
of use are available from the Wireless Application Protocol Forum Ltd.
web site http://www.wapforum.org/docs/copyright.htm

Disclaimer:

This document is subject to change without notice.

Approved Version 4-May-2000
Page 2(122)

Contents

1 S O @] = R 5

2 DOCUMENT STATUS ..ottt e e e et e e esasteeessasseessasssseesasasseesssasasessssassseessasssseesssssseesssasssesssasssseesssssssessesassesssssssseessassnseessssns 6
21 (@00 =27 =11 T = I I 1[0 1 1 R 6
2.2 ERRATA. .o
2.3 COMMENTS

3 [e N (R 7
31 NORMATIVE REFERENGCES.uueeeteeeeeeessetseessesssseessssssssssssasssesssssssssssassssssssssssssssssssssssssssssssssassssessasssssssssssssssssasssssssssssssessssssnes 7
3.2 INFORMATIVE REFERENGCES.ooeeeeeeeeeeeeeeeessesaeeessssssesssssssssssssssssssssasssssssssssssssssssssssssasssssessassssessssssssssssssssesssassssessssssssesssssnes 8

4 DEFINITIONSAND ABBRENVIATIONS ..ottt eeeee e eaeeeeessasaeesssassseessasssseessssseesssasssssssasssseesssssssesssssssesssssssseessasssseessssns 9
41 DEFINITIONS. . eeeeeeeeeeeeeeeeeeeeeaseseeesesaseesssaaseeessasssseessssnseessaaasseesssassesessasssnessasasssesssasseesssasaseessanssnnessassseessssssseesssansseessassseesssssnnes
4.2 ABBREVIATIONS
43 DOCUMENTATION CONVENTIONS ..o et eeeeeeeeeeeeeeeeseeeesssasseessaassssssssasssesssasssessassssessssasssesssssssssssssssssessassssessssssssssssssssesssassnes 11

5 WSPARCHITECTURAL OVERVIEW

51 REFERENCE M ODEL

52 WSPFEATURES.....coonemremrieeerieens
521 BaSIC FUNCE ONAIITY......ceeeuieeeieeeeireec ettt
522 EXIENAEA FUNCHIONAITEY.c...vveveeieeeteie ettt
6 WSPELEMENTSOFLAYER-TO-LAYER COMMUNICATIONccstiiiitreerreerieesreesseesesessesssessssessssssessssesessssssssessesees 15
6.1 NOTATIONS USED....coiuriereeeisersesessesessesessesesstssssssessisessssess s es et s bbb ee s bbbt 15
6.1.1 Definition of Service Primitives and Parameters.........co e sse s sssssssssesees 15
6.1.2 TIME SEOUENCE CRAITS ...ttt et b bbbt 15
6.1.3 Primitives Types
6.1.4 Primitive Parameter TADIES.........oceererrere ettt 16
6.2 SERVICE PARAMETER TYPES....coitttrtteutteetreesessesessesessesessesessesesss et ssesssasss s sese s ssess st sssssssssssssssssessssessssessssssssssssssssnees 17
6.2.1 AAAUPESS ...ttt s s bR R AR R 17
6.2.2 BOAY BNG HEAAETS ...ttt s 17
6.2.3 Capabilities
6.24 PUSH TAENTITIEr (PUSH 1) ...t 17
6.2.5
6.2.6
6.2.7
6.2.8 Transaction Identifier (TranSaCtioN 1) ...
6.3 CONNECTION-MODE SESSION SERVICEcctutteuereseresessisessesesssssestsnssssssssssssessssesssssssesssssssssssssssssssssnssesassesssesssessssssssssssees 18
6.3.1 OVEIVIBW......ceutesttesstseae e ees s s st s A ARt R Rt 18
6.3.2 CAPADITTTIES ...ttt R 19
6.3.3 SEIVICE PrIMITIVES......cociieieieireteets ettt s 22
6.34 Constraints on Using the SErviCe PriMITIVES..........coiiiieeees st ese s sesessesesssenns 34
6.3.5 EXTOr HANAIING oottt et 37
64 CONNECTIONLESS SESSION SERVICE ...uvvutteueresessesessesessesessesssssssessssessssssssssssssssssssssssessssssssssssssssnssssssssassesssssssesssssssesssaens 33
6.4.1 Overview
6.4.2 SEIVICE PrIMITIVES......cociieiieetrete ettt bbb 38
6.4.3 Constraints on Using the SErviCe PrimMitiVES..........couierereeneenesessessses e snssenns 40
6.4.4 EXTOr HANAIING oottt 40
7 WSPPROTOCOL OPERATIONS ..ottt stssestssessssessesessssss ettt sttt esssesssssssesssnens 41

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 3(122)

71 CONNECTION-=-MODE WSP.......otetiieietrieste sttt sttt bbb bbbt b bbbt es bt ns st b sens 4
711 Utilisation of WTP.........c..........
7.12 Protocol Description
713 Protocol Parameters

714 WAETADIES.....o ettt a bR R AR bbb
7.15 Event Processingccoeeeeene.
7.16 State Tables........ccovveveirencrnenas
72 CONNECTIONLESSWSP
8 WSPDATA UNIT STRUCTURE AND ENCODING........cccvttrtireereenernensesesssseesssssssesssssssessessssssssssssssssssssssssssssessessessesssssssssssssns 62
81 DATA FORMATS . cottttiueereeseesesse sttt setsesssseesessesses st ses et st eesessessesssssessessessessesastsssessessesssssessesssssssastssssssessessessessesesesntane 62
811 PrimitivVe Data TYPES.....cccvueerererrerieerisssseresesssessssessssesssessssssssessssssssssssssesssssssssssssssssessssssssesessssssesessssssesessssssnsesssssesssssnnsns 62
8.12 Variable Length UNSigNed INLEQETS.......ccviirrreerresssseesesesssssesessssssesessssssssesssssssssssssssssesssssssssssssssssssssssessessnnans 62
82 PROTOCOL DATA UNIT STRUCTUREccuttueeurerireeretsetsetsesssssessessessssssssssessessessssssssssessessessssssssssssssssassssssssassessessesssssessessssns 63
821 PDU COMMON FIEIAS ..ottt sttt
8.22 Session Management Facility
8.23 LA aToTe W Wq AV o= o] o I = Tor | T 3SR
824 Push and Confirmed PUSN FACHITIES ..ot 69
8.25 Session Resume Facility
83 CAPABILITY ENCODING........ccveunee.
831 Capability Structure...............
832 (@210 T2 Lo 14V B L= 11 (1) P
8.3.3 (@2 T o= o1 LY D= = 10 £
84 HEADER ENCODING......c.cooverrereireenes
84.1 General
84.2 Header syntax
84.3 TEXIUAI HEAUEE SYNLAXvvieceeereeereeiresessisisisessssesesesssses e sssseessesessssssessssssssesesssssessesssesessssssnsesesssnsssssssssessssssnsesssssnnsns
844 End-to-end and HOP-DY-NOP HEAAET S........c.c.viieciririricrireie st sss e ssss s ssssssssssssssssnsnnens
85 MULTIPART DATA ottt setseiseseess sttt sttt sssessesssssssssssssssssssns
85.1 Application/vnd.wap.multipart Format
852 MUIIPAIt HEAUEY ...t sss e essennens
85.3 Y81 o 7= U =11 Y7
APPENDIX A ASSIGNED NUMBERS.........cotitttritritntesersessessessessesessssssss s s s ssssssssssssssssssssssssssssessesssssssssssssssssssssssssessessesssssssssssees 93
APPENDIX B HEADER ENCODING EXAMPLESccovtiinineineiseeseesessesseseesssssssssssssssssssssssessessssssssssssssssssssssssssssessesnsssssssnees 103
Bl HEADER VALUES......ccttitrieeeueneiseeeessasessesssssesssse s s sss st sssssssssss s sssssssssssssssssssssssns assassssssssassssssssssssssassssssssssssens 103
B.1.1 ENcoding Of PrimitiVe VAIUEcovoceereeceerisesceste sttt ss sttt sesnsssnenssnsesnesens 103
B.1.2 ENCOding Of SLHUCLUIr €U VAIUE..........coceeeeeeceeieerescecte sttt ss st ssse s sssssessssesssssnsnssnsesnssens 103
B.1.3 Encoding Of WElI-KNOWN ISt VAIUE.........cccuerececierisrcsrecss sttt ssss e ssss et ssssssssssssesnssens 103
B.1.4 LT aToteTo [T To o] 0 Fo LY 7= L 1= O 103
B.1.5 (=T lote o [HaTo o] @0 1= oA = 1o [O 104
B.1.6 Encoding of @ New UNassigNed tOKEN. ...t sesssssssesssssessssessssssssssssessssens 104
B.1.7 Encoding of a new unassigned header field NAMEcccvirrnrrcee s 104
B.1.8 Encoding of a new unassigned list-valued NEAUEYcccvvvrrrerienrerese st ssesesssessesens 104
B.2 SHIFT HEADER CODE PAGES.....c.tituitrteeaeanesesssassessesssssssessesss s ssssssssssssssssssssessessssssssssssssasens
B.2.1 Shift sequence.........ccoveeeereenee

B.2.2 Short cut
APPENDIX C IMPLEMENTATION NOTES

C1l CONFIRMED PUSH AND DELAYED ACKNOWLEDGEMENTS....c.ccvtmieerrereeserersesesssessesessessesesssessssessssessessssssssesassessens 105
C2 HANDLING OF RACE CONDITIONS.....ccietuerrererrersrseesersesesssessesessssesseessssssesssssesnens

C3 OPTIMISING SESSION DISCONNECTION AND SUSPENSION

C4 DECODING THE HEADER ENCODINGS.......cuturutuererierisesersesesessssesssssessesesssessssessssssesesssessssesssssssssssessssesssssesssssssessessssessensans

C5 ADDING WELL-KNOWN PARAMETERS AND TOKENS.....ccutuerrereieererrenessrsssesesessssessssssssesessssssessssssssesssssesssssssssssessassesens

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Page 4(122)

C6 USE OF CUSTOM HEADER FIELDS

.. 106
APPENDIX D STATIC CONFORMANCE REQUIREMENTcoviuriuniereinerneeisenseseesessessessessssessesssssssssssesssssssssssssessessssssssssssnees 108
D.1 WSPCLIENT/SERVER MODE STATIC CONFORMANCE REQUIREMENTcovtuiuiminisieensessesessessessenssessssssssssssssnsens
D.11 WSP as Connection-Oriented Client Static Confor mance Requirement
D.1.2 WSP as Connection-Oriented Server Static Conformance Requirement
D.1.3 WSP as Connection-Less Client Static Conformance Requirement
D.14

WSP as Connection-Less Server Static Conformance Requirement
APPENDIX E HISTORY AND CONTACT

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 5(122)

1 Scope

The Wireless Application Protocol (WAP) isaresult of continuous work to define an industry-wide specification for
developing applications that operate over wireless communication networks. The scope for the WAP Forum isto define
aset of specifications to be used by service applications. The wireless market is growing very quickly, and reaching new
customers and services. To enable operators and manufacturers to meet the challengesin advanced services,
differentiation and fast/flexible service creation WAP Forum defines a set of protocolsin transport, security, transaction,
session and application layers. For additional information on the WAP architecture, please refer to “Wireless
Application Protocol Architecture Specification” [ARCH].

The Session layer protocol family in the WAP architectureis called the Wireless Session Protocol, WSP. WSP provides
the upper-level application layer of WAP with a consistent interface for two session services. Thefirst isaconnection-
mode service that operates above atransaction layer protocol WTP, and the second is a connectionless service that
operates above a secure or non-secure datagram transport service. For more information on the transaction and
transport services, please refer to “Wireless Application Protocol: Wireless Transaction Protocol Specification”
[WTP] and “Wireless Application Protocol: Wireless Datagram Protocol Specification” [WDP].

The Wireless Session Protocols currently offer services most suited for browsing applications (WSP). WSP provides
HTTP 1.1 functionality and incorporates new features such as long-lived sessions, acommon facility for data push,
capability negotiation and session suspend/resume. The protocols in the WSP family are optimised for low-bandwidth
bearer networks with relatively long latency.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 6(122)

2 Document Status

This document is available online in the following formats:

PDF format at http://www.wapforum.org/.

2.1 Copyright Notice

© Copyright Wireless Application Protocol Forum, Ltd, 1998. All rights reserved.

2.2 Errata

Known problems associated with this document are published at http://www.wapforum.org/.

2.3 Comments

Comments regarding this document can be submitted to WAP Forum in the manner published at
http://www.wapforum.org/.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 7(122)

3 References

3.1 Normative References

[ARCH] “WAP Architecture Specification, WAP Forum, 30-April-1998.
URL: http://www.wapforum.org/

[PROVCONT] “WAP Provisioning Content”, WAP Forum, 19-February-2000,
URL: http://www.wapforum.org/

[WCMP] “Wireless Control Message Protocol Specification, WAP Forum, 14-May-1998.
URL: http://www.wapforum.org/

[WDP| “Wireless Datagram Protocol Specification”, WAP Forum, 14-May-1998.
URL: http://www.wapforum.org/

[WTP| “Wireless Transaction Protocol Specification”, WAP Forum, 11-June-1998.
URL: http://www.wapforum.org/

[UAPROF] “WAG UAPROF", WAP Forum, 10-November-1999.
URL: http://www.wapforum.org/

[WBXML] “WAP Binary XML Content Format”, WAP Forum, 4-November-1999.
URL: http://www.wapforum.org/

[RFC2119] “Key wordsfor use in RFCs to Indicate Requirement Levels’, Bradner, S,
March 1997, URL: ftp://ftp.isi.edu/in-notes/rfc2119.txt .

[RFC2616] “Hypertext Transfer Protocol -- HTTP/1.1”, Fielding, R., et. ., June 1999,URL.: ftp://ftp.isi.edu/in-
notes/rfc2616.txt .

[RFC2045] “Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies’,
Borenstein, N., et. a., November 1996, URL: ftp:/ftp.isi.edu/in-notes/rfc2045.txt .

[RFC2047] “MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-
ASCII Text”, Moore, K., November 1996, URL : ftp:/ftp.isi.edu/in-notes/rfc2047.ixt .

[RFC2145] “Use and Interpretation pf HTTP Version Numbers®, Mogul J.C. & a, May 1997, URL:
ftp://ftp.isi.edu/in-notes/rfc2145.txt

[RFC822] “Standard for The Format of ARPA Internet Text Messages’, Crocker, D.,

August 1982, URL.: ftp://ftp.isi.edu/in-notes/rfc822.txt .

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Page 8(122)
3.2 Informative References
[1S07498] “Information technology - Open Systems | nterconnection - Basic Reference Model: The Basic
Mode”, ISO/IEC 7498-1:1994.
[1S010731] “Information Technology - Open Systems Interconnection - Basic Reference Model - Conventions
for the Definition of OS| Services”, ISO/IEC 10731:1994.
[RFC1630] “Universal Resource ldentifiersin WWW, A Unifying Syntax for the Expression of Names and

Addresses of Objects on the Network as used in the World-Wide Web”, Berners-Lee, T., June
1994, URL :ftp://ftp.isi.edu/in-notes/rfc1630.txt .

[RFC1738] “Uniform Resource Locators (URL)”, Berners-Lee, T., et. d., December 1994,
URL:ftp://ftp.isi.edu/in-notes/rfc1738.txt .

[RFC1808] “Relative Uniform Resource Locators’, Fielding, R., June 1995,
URL :ftp://ftp.isi.edu/in-notes/rfc1808.txt .

[RFC1864] “The Content-M D5 Header Field”, Meyers, J. and Rose, M., October 1995, URL :ftp://ftp.isi.edu/in-
notes/rfc1864.txt .

[CCPPEX] “Composite Capability / PreferencesProfiles: A user side framework for Content Negotiation,”

W3C Note, 27-Jduly, 1999.

URL: http:/Aww.w3.0rg/ TR/1999/NOTE-CCPP-19990727
[MEDIATYPE] “XML MediaTypes’, M. Murata& a, December 1999, URL:

http://ww.simonstl.com/idxmlmime/draft-murata-xml-02.htm

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 9(122)

4 Definitions and Abbreviations

4.1 Definitions
For the purposes of this specification the following definitions apply.

Bearer Network
A bearer network is used to carry the messages of atransport-layer protocol - and ultimately also of the
session layer protocols - between physical devices. During the lifetime of a session, several bearer networks
may be used.

Capability
Capability isaterm introduced in section 6.3.2, " Capabilities”, to refer to the session layer protocol facilities
and configuration parametersthat a client or server supports.

Capability Negotiation
Capability negotiation is the mechanism defined in section 6.3.2.1, " Capability Negotiation", for agreeing on
session functionality and protocol options. Session capabilities are negotiated during session establishment.
Capability negotiation allows a server application to determine whether a client can support certain protocol
facilities and configurations.

Client and Server
Theterm client and server are used in order to map WSP to well known and existing systems. A clientisa
device (or application) which initiates arequest for a session. The server is adevice that passively waits for
session requests from client devices. The server can either accept the request or reject it.

An implementation of the WSP protocol may include only client or server functionsin order to minimise the
footprint. A client or server may only support a subset of the protocol facilities, indicating this during protocol
capability negotiation.

Connectionless Session Service
Connectionless session service (section 6.4) is an unreliable session service. In this mode, only the request
primitive is available to service users, and only the indication primitive is avail able to the service provider.

Connection-Mode Session Service
Connection-mode session service (section 6.3) isareliable session service. In this mode, both request and
response primitives are available to service users, and both indication and confirm primitives are available to
the service provider.

Content
The entity body sent with arequest or response is referred to as content. It isencoded in aformat and
encoding defined by the entity-header fields.

Content Negotiation
Content negotiation is the mechanism the server usesto select the appropriate type and encoding of content
when servicing arequest. The type and encoding of content in any response can be negotiated. Content
negotiation allows a server application to decide whether a client can support a certain form of content.

Entity
An entity isthe information transferred as the payload of arequest or response. An entity consists of meta-
information in the form of entity-header fields and content in the form of an entity-body.

Header
A header contains meta-information. Specifically, a session header contains general information about a
session that remains constant over the lifetime of a session; an entity-header contains meta-information about
aparticular request, response or entity body (content).

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 10(122)

Layer Entity
In the OSI architecture, the active elements within alayer that participatein providing layer service are called
layer entities.

Method
Method is the type of client request as defined by HTTP/1.1 (eg, Get, Post, etc.). A WSP client uses methods
and extended methods to invoke services on the server.

Null terminated string
A sequence of non-zero octets followed by a zero octet.

Peer Address Quadruplet
Sessions are associated with a particular client address, client port, server address and server port. This
combination of four valuesis called the peer address quadruplet in the specification.

Proxy
Anintermediary program that acts both as a server and aclient for the purpose of making request on behalf of
other clients. Requests are serviced internally or by passing them on, with possible translation, to other server.

Pull and Push Data Transfer
Push and pull are common vernacular in the Internet world to describe push transactions and method
transactions respectively. A server “pushes’ datato aclient by invoking the WSP push service, whereas a
client “pulls’ datafrom aserver by invoking the WSP method service.

Session
A long-lived communication context established between two programs for the purpose of transactions and
typed datatransfer.

Session Service Access Point (S-SAP)
Session Service Access Point is a conceptual point at which session service is provided to the upper layer.

Session Service Provider
A Session Service Provider isalayer entity that actively participatesin providing the session service viaan
S-SAP.

Session Service User
A Session Service User isalayer entity that requests services from a Session Service Provider viaan S-SAP.

Transaction
Three forms of transactions are specified herein. We do not use the term transaction to imply the semantics
often associated with database transactions.

= A method transaction is a three-way request-response-acknowledge communication initiated
by the client to invoke a method on the server.

= A push transaction is atwo-way reguest-acknowledge communication initiated by the server to
push datato the client.

= A transport transaction is alower-level transaction primitive provided by a Transaction Service
Provider.

4.2 Abbreviations

For the purposes of this specification the following abbreviations apply.

API Application Programming I nterface

A-SAP Application Service Access Point

HTTP Hypertext Transfer Protocol

SO International Organization for Standardization
MOM Maximum Outstanding M ethod requests
MOP Maximum Outstanding Push requests

MRU Maximum Receive Unit

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Page 11(122)

oSl Open System Interconnection
PDU Protocol Data Unit

S-SAP Session Service Access Point
Sbu Service Data Unit

SEC-SAP Security Service Access Point
T-SAP Transport Service Access Point
TID Transaction ldentifier

TR-SAP Transaction Service Access Point
WDP Wireless Datagram Protocol
WSP Wireless Session Protocol
WTP Wireless Transaction Protocol

4.3 Documentation Conventions

This specification uses the same keywords as specified in RFC 2119 [RFC2119] for defining the significance of each
particular requirement. These words are:

MUST
Thisword, or the terms"REQUIRED" or "SHALL", mean that the definition is an absol ute requirement of the
specification.

MUST NOT
This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition of the
specification.

SHOULD
Thisword, or the adjective“RECOMMENDED”, means that there may exist valid reasonsin particul ar
circumstances to ignore a particular item, but the full implications must be understood and carefully weighed
before choosing a different course.

SHOULD NOT
This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid reasonsin particular
circumstances when the particular behaviour is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behaviour described with this label.

MAY
Thisword, or the adjective “OPTIONAL”, meansthat an item istruly optional. One vendor may choose to
include the item because a particular marketplace requiresit or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation which does not include a particular
option MUST be prepared to interoperate with another implementation which does include the option, though
perhaps with reduced functionality. In the same vein an implementation which does include a particular option
MUST be prepared to interoperate with another implementation which does not include the option (except, of
courseg, for the feature the option provides.)

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 12(122)

5 WSP Architectural Overview

Wireless Session Protocol is asession-level protocol family for remote operations between a client and proxy or server.

5.1 Reference Model

Application - Service Access Point

|
A_MEar;i?temem —O_ Application J Application Layer Protocol
y L
@ @ Session - Service Access Point

S-Management

Entitity —O— Se|SSIOI’1 Session Layer Protocol
tb _ TR-SAP Transaction — Service Access Point
: TR-l\éﬁ;z:\gement T -O- ' -- WTP Wireless Transaction Protocol
SEC-SAP .+ Security-Service Access Point

SEC-Management | S .
: Entitity pren o Security i Security Layer Protocol

® @ Transport - Service Access Point

T-Management
Entitity () WDP/UDP J Wireless Datagram Protocol

- " X m Underlying
earer-iManagemen B .
earer Service
Entitity U

Figure 1. Wireless Application Protocol Reference Model

A model of layering the protocolsin WAP isillustrated in Figure 1. WAP protocols and their functions are layered in a
style resembling that of the SO OSI Reference Model [1SO7498]. Layer Management Entities handle protocol
initialisation, configuration and error conditions (such as|oss of connectivity due to the mobile station roaming out of
coverage) that are not handled by the protocol itself.

WSP is designed to function on the transaction and datagram services. Security is assumed to be an optional layer
above the transport layer. The security layer preserves the transport service interfaces. The transaction, session or
application management entities are assumed to provide the additional support that isrequired to establish security
contexts and secure connections. This support is not provided by the WSP protocols directly. Inthisregard, the
security layer ismodular. WSP itself does not require a security layer; however, applications that use WSP may require
it.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 13(122)

5.2 WSP Features

WSP provides ameans for organised exchange of content between co-operating client/server applications. Specifically,
it provides the applications means to:

a) establish areliable session from client to server and release that session in an orderly manner;
b) agree on acommon level of protocol functionality using capability negotiation;

c) exchange content between client and server using compact encoding;

d) suspend and resume the session.

The currently defined services and protocols (WSP) are most suited for browsing-type applications. WSP defines
actually two protocols: one provides connection-mode session services over atransaction service, and another
provides non-confirmed, connectionless services over a datagram transport service. The connectionless service is most
suitable, when applications do not need reliable delivery of data and do not care about confirmation. It can be used
without actually having to establish a session.

In addition to the general features, WSP offers means to:

a) provide HTTP/1.1 functionality:
1) extensible request-reply methods,
2) composite objects,
3) content type negotiation;
b) exchange client and server session headers;
C) interrupt transactionsin process,
d) push content from server to client in an unsynchronised manner;
€) negotiate support for multiple, simultaneous asynchronous transactions.

5.2.1 Basic Functionality

The core of the WSP design isabinary form of HTTP. Consequently the requests sent to a server and responses going
to aclient may include both headers (meta-information) and data. All the methods defined by HTTP/1.1 are supported.

In addition, capability negotiation can be used to agree on a set of extended request methods, so that full compatibility

to HTTP/1.1 applications can be retained.

WSP provides typed datatransfer for the application layer. The HTTP/1.1 content headers are used to define content
type, character set encoding, languages, etc, in an extensible manner. However, compact binary encodings are defined
for the well-known headers to reduce protocol overhead. WSP also specifies a compact composite data format that
provides content headers for each component within the composite data object. Thisisasemantically equivalent binary
form of the MIME “multipart/mixed” format used by HTTP/1.1.

WSP itself does not interpret the header information in requests and replies. As part of the session creation process,
request and reply headers that remain constant over thelife of the session can be exchanged between service usersin
the client and the server. These may include acceptabl e content types, character sets, languages, device capabilities
and other static parameters. WSP will pass through client and server session headers as well as request and response
headers without additions or removals.

Thelifecycle of aWSP session is not tied to the underlying transport. A session can be suspended whilethe sessionis
idle to free up network resources or save battery. A lightweight session re-establishment protocol allows the session to
be resumed without the overhead of full-blown session establishment. A session may be resumed over adifferent bearer
network.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 14(122)

5.2.2 Extended Functionality

WSP allows extended capabilities to be negotiated between the peers. Thisallows for both high-performance, feature-
full implementation as well as simple, basic and small implementations.

WSP provides an optional mechanism for attaching header information (meta-data) to the acknowledgement of a
transaction. Thisallowsthe client application to communicate specific information about the completed transaction
back to the server.

WSP provides both push and pull datatransfer. Pull is done using the request/response mechanism from HTTP/1.1. In
addition, WSP provides three push mechanisms for data transfer:

= Confirmed data push within an existing session context
= Non-confirmed data push within an existing session context
= Non-confirmed data push without an existing session

The confirmed data push mechanism allows the server to push datato the client at any time during asession. The
server receives confirmation that the push was delivered.

The non-confirmed data push within an existing session provides asimilar function as reliable data push, but without
confirmation. The non-confirmed data push can also without an existing session. In this case, a default session context
is assumed. Non-confirmed out-of-session data push can be used to send one-way messages over an unreliable
transport.

WSP optionally supports asynchronous requests, so that a client can submit multiple requests to the server
simultaneously. Thisimproves utilisation of airtime in that multiple requests and replies can be coalesced into fewer
messages. Thisalso improves latency asthe results of each request can be sent to the client when it becomes available.

WSP partitions the space of well-known header field names into header code pages. Each code page can define only a
fairly limited number of encodings for well-known field names, which permits them to be represented more compactly.
Running out of identities for well-known field names on a certain code page is still not a problem, since WSP specifiesa
mechanism for shifting from one header code page to another.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 15(122)

6 WSP Elements of Layer-to-Layer Communication

The session layer in WAP provides both connection-mode and connectionless services. They are defined using an
abstract description technique based on service primitives, which is borrowed from [1SO10731]. Some of the terms and
concepts used to describe the communication mechanisms are borrowed from [1SO7498], whereas the terminology used
for operations and the manipul ated data objects is based on [RFC2616].

This service definition specifies the minimum functionality that the WAP session must be able to provide to support its

users. Since thisdefinition isabstract, it does not specify or constrain programming interfaces or implementations. In
fact the same service could be delivered by different protocols.

6.1 Notations Used

6.1.1 Definition of Service Primitives and Parameters

Communications between layers and between entities within the session layer are accomplished by means of service
primitives. Service primitives represent, in an abstract way, the logical exchange of information and control between the
session layer and adjacent layers.

Service primitives consist of commands and their respective responses associated with the particular service provided.
The general syntax of aprimitiveis:

X-Service.type (Parameters)
where X designates the layer providing the service. For this specification X is“S” for the Session Layer.
Service primitives are not the same as an application-programming interface (API) and are not meant to imply any
specific method of implementing an API. Service primitives are an abstract means of illustrating the services provided by
the protocol layer to the layer above. In particular, the service primitives and their parameters are not intended to include
the information that an implementation might need to route the primitives to each implementation object, which

corresponds to some abstract user or service provider entity instance. The mapping of these conceptsto areal API and
the semantics associated with areal APl isan implementation issue and beyond the scope of this specification.

6.1.2 Time Sequence Charts

The behaviour of service primitivesisillustrated using time sequence charts, which are described in [1SO10731].

Client Provider Server

S-request

=~ S-indication
=~ B

Figure 2: A Non-confirmed Service

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 16(122)

Figure 2illustrates a simple hon-confirmed service, which isinvoked using a request primitive and resultsin an
indication primitivein the peer. The dashed line represents propagation through the provider over aperiod of time
indicated by the vertical difference between the two arrows representing the primitives. If the labelsClient and Server
areincluded in the diagram, thisindicates that both peers cannot originate aprimitive; if the labels are omitted, either
peer can originate the primitive.

6.1.3 Primitives Types

The primitives types defined in this specification are

Type Abbreviation Description
Request reg Used when a higher layer is reguesting a service from the next lower layer
Indication | ind A layer providing a service uses this primitive type to notify the next higher

layer of activitiesrelated to the peer (such asthe invocation of the request
primitive) or to the provider of the service (such as a protocol generated

event)

Response | res A layer uses the response primitive type to acknowledge receipt of the
indication primitive type from the next lower layer

Confirm cnf The layer providing the requested service uses the confirm primitive type to

report that the activity has been completed successfully

6.1.4 Primitive Parameter Tables

The service primitives are defined using tables indicating which parameters are possible and how they are used with the
different primitive types. If some primitive typeis not possible, the column for it will be omitted.

The entries used in the primitive type columns are defined in the following table:

Table 1. Parameter Usage Legend
Presence of the parameter is mandatory - it MUST be present

Presence of the parameter is conditional depending on values of other parameters

Presence of the parameter isauser option - it MAY be omitted
Presence of the parameter is a service provider option - an implementation MAY not provideit

T OO L

The parameter is absent
Presence of the parameter is determined by the lower layer protocol

= When this primitiveis generated as aresult of invoking the preceding primitive by the peer
service user, the value of the parameter shall be identical to the value of the corresponding
parameter in that primitive. Otherwise the service provider selects an appropriate value.

*

For example, asimple confirmed primitive might be defined using the following:

Primitive S-PrimitiveX
Par ameter reg | Ind | res | onf
Parameter 1 M M(=) - -
Parameter 2 - — O C(=)

In the example definition above, Parameter 1 is always present in S-PrimitiveX.request and corresponding
S-PrimitiveX.indication. Parameter 2 MAY be specified in S-PrimitiveX.response and in that case it MUST be present
and have the equivalent value also in the corresponding S-PrimitiveX.confirm; otherwise, it MUST NOT be present.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 17(122)

An example of asimpler primitiveis:

Primitive S-PrimitiveY
Par ameter reg | ind
Parameter 2 - M

In this example, S-PrimitiveY.request has no parameters, but the corresponding S-PrimitiveX.indication MUST aways
have Parameter 2. S-PrimitiveX.response and S-PrimitiveX.confirmare not defined and so can never occur.

6.2 Service Parameter Types

This section describes the types of the abstract parameters used subsequently in the service primitive definition. The
actual format and encoding of these typesis an implementation issue not addressed by this service definition.

In the primitive descriptions the types are used in the names of parameters, and they often have an additional qualifier
indicating where or how the parameter is being used. For example, parameter Push Body is of the type Body, and
parameter Client Address of type Address.

6.2.1 Address

The session layer uses directly the addressing scheme of the layer below. Server Address and Client Address together
form the peer address quadruplet, which identifies the local lower-layer service access point to be used for
communication. This access point has to be prepared for communication prior to invoking the session services; thisis
expected to be accomplished with interactions between the service user and management entitiesin amanner that is not
apart of this specification.

6.2.2 Body and Headers

The Body typeis equivalent to the HTTP entity-body [RFC2616]. The Headerstype representsalist of attribute
information items, which are equivalent to HTTP headers.

6.2.3 Capabilities

The Capabilities type represents a set of service facilities and parameter settings, which are related to the operation of
the service provider. The predefined capabilities are described in section 6.3.2.2, but the service providers may
recognise additional capabilities.

6.2.4 Push Identifier (Push Id)

The Push Identifier type represents an abstract value, which can be used to uniquely distinguish among the push
transactions of a session that are pending on the service interface.

6.2.5 Reason

The service provider uses the Reason type to report the cause of a particular indication primitive. Each provider MAY
define additional Reason values, but the service user MUST be prepared for the following ones:

Reason Value Description

PROTOERR Therules of the protocol prevented the peer from performing the operationinits
current state. For example, the used PDU was not allowed.

DISCONNECT The session was disconnected whil e the operation was still in progress.

SUSPEND The session was suspended while the operation was still in progress.

RESUME The session was resumed while the operation was still in progress.

CONGESTION The peer implementation could not process the request due to lack of resources.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 18(122)

Reason Value Description

CONNECTERR An error prevented session creation.

MRUEXCEEDED The SDU sizein arequest was larger than the Maximum Receive Unit negotiated
with the peer.

MOREXCEEDED The negotiated upper limit on the number of simultaneously outstanding method
or push requests was exceeded.

PEERREQ The service peer requested the operation to be aborted.
NETERR An underlying network error prevented completion of arequest.
USERREQ An action of thelocal service user was the cause of the indication.

6.2.6 Request URI

The Reguest URI parameter typeisintended to have asimilar use as the Request-URI in HT TP method requests
[RFC2616]. However, the session user MAY useit asit seesfit, even leaving it empty or including binary data not
compatible with the URI syntax.

6.2.7 Status
The Status parameter type has values equivalent to the HTTP/1.1 status codes [RFC2616].

6.2.8 Transaction ldentifier (Transaction Id)

The Transaction Identifier type represents an abstract val ue, which can be used to uniquely distinguish among the
method invocation transactions of a session that are pending on the service interface.

6.3 Connection-mode Session Service

6.3.1 Overview

The connection-mode session service is divided into facilities, some of which are optional. Most of the facilities are
asymmetric so that the operations available for the client and the server connected by the session are different. The
provided facilitiesare

= Session Management facility
= Method Invocation facility

= Exception Reporting facility
= Pushfacility

= Confirmed Push facility

= Session Resumefacility

The Session Management and Exception reporting facilities are always available. The others are controlled by capability
negotiation during session establishment.

Session Management allows a client to connect with a server and to agree on the facilities and protocol optionsto be
used. A server can refuse the connection attempt, optionally redirecting the client to another server. During session
establishment the client and server can al so exchange attribute information, which is expected to remain valid for the
duration of the session. Both the server and the client service user can also terminate the session, so that the peer is
eventually notified about the termination. The user isalso notified if session termination occurs due to the action of the
service provider or amanagement entity.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 19(122)

Method I nvocation permits the client to ask the server to execute an operation and return the result. The available
operations are the HT TP methods [RFC2616] or user-defined extension operations, which fit into the same request-reply
or transaction pattern. The service users both in the client and the server are always notified about the completion of the
transaction, whether it succeeded or failed. Failure can be caused by an abort initiated either by the service user or the
service provider.

The Exception Reporting facility allows the service provider to notify the user about eventsthat are related to no
particular transaction and do not cause a change in the state of the session.

The Push facility permitsthe server to send unsolicited information to the client taking advantage of the session
information shared by the client and the server. Thisfacility isanon-confirmed one, so delivery of theinformation
MAY beunreliable.

The Confirmed Push facility is similar to the Push facility, but the client confirms the receipt of the information. The
client may also choose to abort the push, so that the server is notified.

The Session Resume facility includes means to suspend a session so that the state of the session is preserved, but both
peers know that further communication is not possible until the client resumes the session. This mechanism is also used
to handle the situations in which the service provider detects that further communication is no longer possible, until
some corrective action istaken by the service user or management entities. It can also be used to switch the session to
use an alternate bearer network, which has more appropriate properties than the one being used. This facility SHOULD
be implemented to ensure reasonabl e behaviour in certain bearer network environments.

6.3.2 Capabilities

Information that is related to the operation of the session service provider is handled using capabilities. Capabilities are
used for awide variety of purposes, ranging from representing the selected set of service facilities and settings of
particular protocol parameters, to establishing the code page and extension method names used by both peers.

6.3.2.1 Capability Negotiation

Capability negotiation is used between service peersto agree on amutually acceptable level of service, and to optimise
the operation of the service provider according to the actual requirements of the service user. Capability negotiationis
to be applied only to negotiable capabilities; informational capabilities are to be communicated to the peer service user
without modifications.

The peer which starts the capability negotiation processis called theinitiator, and the other peer iscalled the
responder. Only aone-way capability negotiation is defined, in which the initiator proposes a set of capabilities, and
the responder replies to these. The capability negotiation processis under the control of theinitiator, so that the
responder MUST NOT ever reply with any capability setting, which implies ahigher level of functionality than the one
proposed by the initiator and supported by the service provider peers. Capability negotiation applies alwaysto all the
known capabilities. If aparticular capability is omitted from the set of capabilities carried by a service primitive, this must
be interpreted to mean that the originator of the primitive wants to use the current capability setting, either the default or
the value agreed upon during capability negotiation process. However, the responder may still reply with adifferent
capability value, aslong as this does not imply ahigher level of functionality.

The one-way capability negotiation proceeds as follows:

1. Serviceuser ininitiator proposes a set of capability values.

2. Theservice provider in the initiator modifies the capabilities, so that they do not imply ahigher level of
functionality than the provider actually can support.

3. Theservice provider in the responder further modifies the capabilities, so that they do not imply ahigher level of
functionality than the provider in the responder actually can support.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 20(122)

4. The service user in the responder receives this modified set of capabilities, and responds with a set of capabilities,
which reflect the level of functionality it actually wishesto use. If aparticular capability is omitted, thisis
interpreted to mean that the responding service user wants to use the proposed capability setting.

5. The capabilities selected by the service user in the responder are indicated to the service user in theinitiator. They
will become the default settings, which will be applicable in the next capability negotiation during the session.

If the operation implied by the service primitive that is used to convey the capability information fails, the capability
settings that were in effect before the operation shall remain in effect.

If anegotiable capability value is apositive integer, the final capability setting shall be the minimum of the values, which
the service users have proposed to use and which the service provider peers are capabl e of supporting.

If anegotiable capability valueisaset, the final capability setting shall contain only those elements, which are all
included in the subsets that the service users have proposed to use and which the service provider peers are capabl e of
supporting.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 21(122)

6.3.2.2 Defined Capabilities

A service user and aservice provider MUST recognise the following capabilities.

Capability Name Class | Type Description
Aliases I List of A service user can use this capability to indicate the aternate
addresses addresses the peer may use to access the same service user
instance that is using the current session. The addresses are listed
in apreference order, with the most preferred aiasfirst. This
information can, for example, be used to facilitate a switch to a
new bearer, when a session is resumed.
Client SDU Size N Positive The client and server use this capability to agree on the size of
integer the largest transaction service data unit, which may be sent to the
client during the session.
Extended Methods N Set of method | This capability is used to agree on the set of extended methods
names (beyond those defined in HTTP/1.1), which are supported both
by the client and the server peer, and may be used subsequently
during the session.
Header Code Pages N Set of code This capability is used to agree on the set of extension header
page names code pages, which are supported both by the client and the
server, and shall be used subsequently during the session.
Maximum N Positive The client and server use this capability to agree on the maximum
Outstanding Method integer number of method invocations, which can be active at the same
Reguests time during the session.
Maximum N Positive The client and server use this capability to agree on the maximum
QOutstanding Push integer number of confirmed push invocations, which can be active at the
Reguests same time during the session.
Protocol Options N Set of facilities | This capability is used to enable the optional service facilities and
and features features. It may contain elements from the list: Push, Confirmed
Push, Session Resume, Acknowledgement Headers. The presence
of an element indicates that use of the specific facility or feature
is enabled.
Server SDU Size N Positive The client and server use this capability to agree on the size of
integer the largest transaction service data unit, which may be sent to the
server during the session.

In the Class column N stands for negotiable, | for informational .

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 22(122)

6.3.3 Service Primitives
This section lists all the abstract service primitives provided by the service and defines their meaning.

6.3.3.1 S-Connect

This primitive is used to initiate session establishment and to notify of its success. It also provides one-way capability
negotiation with the client being the initiator and the server being the responder. It is part of the Session Management
facility.

Primitive S-Connect

Par ameter reg | Ind | Res enf
Server Address M M=) - -
Client Address M M(=) - -
Client Headers o) CE) - -
Requested Capabilities @) M - -
Server Headers - - o C=)
Negotiated Capabilities - - o M(=)

Server Address identifies the peer with which the session is to be established.
Client Address identifies the originator of the session.

Client Headers and Server Header s represent attribute information compatible with HT TP message headers [RFC2616],
which is communicated without modification between the service users. They can be used for application-level
parameters or to cache request headers and response headers, respectively, that are constant throughout the session.
However, the actual interpretation and use of thisinformation are completely up to the service users. If these
parameters are not provided, applications may rely on application-dependant default session headersto provide a static
form of session-wide information.

Requested Capabilities and Negotiated Capabilities are used to implement the capability negotiation process
described in section 6.3.2.1, " Capability Negotiation”. If the rulesfor capability negotiation are violated, the appropriate
action isto fail the session establishment.

The service user may during session establishment invoke some service primitives that will turn out not to be part of the
finally selected session functionality. When session establishment and the associated capability negotiation completes,
such service requests shall be aborted and the appropriate error shall be indicated to the service user. Itisan error, if
such primitives are invoked after the session has been established, and the appropriate action isalocal implementation
matter.

Thefollowing figureillustrates the primitives used in a successful session establishment. The service user MAY request
amethod invocation already while the session is being established. Primitives related to this are shown with dashed
lines.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 23(122)

Client Provider Server
S-Connect.reg
—_— e .
Ry S-Connect.ind
S-MethodInvoke.req Tree————— =
_____________ ’_““‘*»——--__\I S-Connect.res
I
S-Connect.cnf IEUPSEL S R
R N | S-Methodinvoke.ind
b - e

S T
Ssrednoeell T | SMetodResitreg
S-MethodResultind | __-——~"""
- - ——— -]
S-MethodResult.res
"""""""" B R S-MethodResult.cnf

Figure 3: Successful Session Establishment

A disconnect indication generated by the service provider can occur aso at any time during the session establishment.

6.3.3.2 S-Disconnect

This primitive is used to disconnect a session and to notify the session user that the session could not be established
or has been disconnected. Itispart of the Session Management facility. This primitive isaways indicated when the
session termination is detected, regardless of whether the disconnection was initiated by the local service user, the peer
service user or the service provider. Before the disconnect indication, the session service provider MUST abort all
incomplete method and push transactions. After the indication further primitives associated with the session MUST
NOT occur.

Primitive S-Disconnect
Par ameter req | ind
Reason Code M M
Redirect Security C C(=)
Redirect Addresses C C(®)
Error Headers O P(=)
Error Body 0] P(=)

The Reason Code parameter indicates the cause of disconnection. The possible values are a union of the values
possible for the Reason and Status parameter types. In S-Disconnect.request only values of the Status type may be
used.

If Reason Code indicates that the client is being redirected to contact a new server address, the Redirect Security and
Redirect Addresses parameters MUST be present.

Redirect Security indicates whether or not the client MAY reuse the current secure session when redirecting to the new
server or whether it MUST use adifferent secure session.

Redirect Addresses are the alternate addresses, which the client at the moment MUST use to establish a session with
the same serviceit initially tried to contact. If Reason Code indicates that the client is being redirected temporarily, it

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 24(122)

SHOULD usethe original Server Addressin future attempts to establish a session with the service, once the subsequent
session with one of the redirect addresses has terminated. If Reason indicates that the client is being redirected
permanently, it SHOULD use one of the Redirect Addresses in future attempts to establish a session with the service.

If Reason Code takes one of the valuesin the Statustype, Error Headers and Error Body SHOULD be included to
provide meaningful information about the error in addition to the Reason Code. The size of the headers and body
MUST NOT cause the SDU to exceed the currently selected Maximum Receive Unit of the peer. The service provider
MAY choose not to communicate the Error Headers and Error Body to the peer service user.

The following figureillustrates the primitives used, when the server rejects or redirects the session. The service user
MAY request amethod invocation already while the session is being established. Primitivesrelated to this are shown
with dashed lines.

Client
Provider Server
S-Connect.req
— S-Connect.ind
S-Methodinvoke.req T >
___________ -l

S-Disconnect.req

e -
7 i .
S-MethodAbort.ind e S Disconnect.ind
- —————— e L-- - ’/’
S-Disconnect.ind 7
<—-’/

Figure 4: Refused Session Establishment

A disconnect indication generated by the service provider can occur at any time during the session.

. Provider
S-Disconnect.req
—_— . .
R S-Disconnect.ind
S-Disconnect.ind Tl
N
-

Figure 5: Active Session Termination

The primitive sequence for session termination of an active session is shown inFigure 5. The S-Disconnect.indication
indicates that the session has been torn down, and cannot generate any further indications. The service provider shall
abort all outstanding transactions prior to the S-Disconnect.indication.

The service user must be prepared for the session being disconnected at any time; if it wishesto continue
communication, it has to establish the session again and retry the method invocations that may have been aborted.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 25(122)

6.3.33 S-Suspend

This primitiveis used to request the session to be suspended, so that no other activity can occur onit, until it iseither
resumed or disconnected. Before the session becomes suspended, the session service provider MUST abort all
incomplete method and push transactions. This primitive is part of the Session Resume facility.

Primitive S-Suspend
Par ameter reg | ind
Reason — M

Reason provides the reason for the suspension. The service user may have requested it, or the service provider may
have initiated it.

A possible flow of primitivesisshown inthe Figure 6:

Client Provider Server
S-Suspend.req
\\“»\\\ S-Suspend.ind
S-Suspend.ind B ——
—————
~ ~
~ ~
S-Resume.req
_— . T~
T~ S-Resume.ind
— T
| S-Resume.res
S-Resume.cnf T
|-

Figure 6: Session Suspension and Resume

Typically, the client would suspend a session, when it knows it will not be available to respond to data pushes, for
example, because it will close adatacircuit in the underlying bearer network. A side effect of S-Suspend.request is that
all datatransfer transactions are immediately aborted.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 26(122)

Client Provider Server
S-Suspend.ind =
‘ N -_~- - N
\\ \\
~ ~
S-Resume.req ™~ ™~
—_— .
TTe——l S-Resume.ind
\‘—~_— »
S-Disconnect.req
S-Disconnect.ind ‘___,_/*'<—
T S-Disconnect.ind
L e

Figure 7: Suspend by Provider and Refused Resume

The service provider MAY also cause an established session to be suspended at any time, eg, due to the bearer network
becoming unavailable. Figure 7 shows a scenario, in which only one of the peers - in this case the client - is notified
about the suspension. When the client tries to resume the session, the server refuses the attempt by disconnecting the
session. For example, the server may consider the used bearer network to be unsuitable.

Provider
S-Suspend.ind PRI S-Suspend.ind
e B) \ N
. T
S-Disconnect.req
—————————
S-Disconnect.ind
‘>
~—
N -
N
S-Disconnect.ind . -\\\
- -_~ - N

Figure 8: Suspended Session Termination

Figure 8 shows a sequence of events, in which both service users happen to be notified about the suspended session.
However, in this case one service user decides to disconnect instead of trying to resume the session. The service user
may tear down one half of the session at any time by invoking the S-Disconnect.request primitive. However, the other
half of the session will not be notified of this, since the communication path between the service peersis not available.
Asshown in the figure, the service provider SHOULD eventually terminate a suspended session. The time a suspended
session isretained isaloca implementation matter.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 27(122)

6.3.3.4 S-Resume

This primitiveis used to request the session to be resumed using the new service access point identified by the
addresses. It is part of the Session Resume facility.

Primitive S-Resume
Par ameter reg | ind | res cnf
Server Address M M(=) — —
Client Address M M(= - -
Client Headers ©) =
Server Headers ®) C(=)

Server Addressidentifies the peer with which the session isto be resumed.

Client Addressidentifies the current origin of the session.

Both the Server Address and Client Address MAY be different than the one that wasin effect before the session was
suspended. If the Server Addressis different than before suspension, the service user isresponsible for providing an
address, which will contact the same server instance that was previously in use.

Client Headers and Server Headers represent attribute information compatible with HT TP message headers [RFC2616],

which is communicated without modification between the service users. They can be used for application-level
parameters or to cache request headers and response headers, respectively, that are constant throughout the session.

6.3.3.5 S-Exception

This primitive is used to report events that neither are related to a particular transaction nor cause the session to be
disconnected or suspended. It is part of the Exception Reporting facility.

Primitive S-Exception
Parameter ind
Exception Data M

Exception Data includes information from the service provider. Exceptions may occur for many reasons:
= Changesto the underlying transport (eg, roaming out of coverage)

= Changesto quality of service
= Changes or problemsin the security layer

6.3.3.6 S-Methodlnvoke

This primitiveis used to request an operation to be executed by the server. It can be used only together with the S-
MethodResult primitive. Thisprimitiveis part of the Method Invocation facility.

Primitive S-Methodlnvoke

Par ameter req | ind | res | onf
Client Transaction Id M — — M(=)
Server Transaction Id - M M(=) -
Method M M(=) — —
Request URI M M(=) - -
Request Headers O C(®) — —
Request Body C C(® - -

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Page 28(122)
The service user in the client can useClient Transaction Id to distinguish between pending transactions.
The service user in the server can use Server Transaction Id to distinguish between pending transactions.

Method identifies the requested operation: either an HT TP method [RFC2616] or one of the extension methods
established during capability negotiation.

Request URI specifies the entity to which the operation applies.
Request Headers are alist of attribute information semantically equivalent to HTTP headers [RFC2616].

Request Body is the data associated with the request, which is semantically equivalent to HTTP entity body. If the
request Method is not defined to allow an entity-body, Request Body MUST NOT be provided [RFC2616].

6.3.3.7 S-MethodResult

Thisprimitive is used to return aresponse to an operation request. It can beinvoked only after a preceding S-
Methodlnvoke primitive has occurred. Thisprimitiveis part of the Method Invocation facility.

Primitive S-MethodResult
Par ameter reg | ind | res | cnf
Server Transaction |d M - - M(=)
Client Transaction Id — M M(=) _
Status M M(=) — _
Response Headers (0] C(®) _
Response Body C =) - -
Acknowledgement Headers - - 0 P(=)

The service user in the client can useClient Transaction Id to distinguish between pending transactions. It MUST
match the Client Transaction |d of aprevious S-Methodlnvoke.request, for which S-MethodResult.indication has not
yet occurred.

The service user in the server can use Server Transaction Id to distinguish between pending transactions. It MUST
match the Server Transaction Id of a previous S-Methodl nvoke.response, for which S-MethodResult.request has not
yet occurred.

Statusis semantically equivalent to an HTTP status code [RFC2616].

Response Headers are alist of attribute information semantically equivalent to HTTP headers [RFC2616].

Response Body is the data associated with the response, which is semantically equivalent to an HTTP entity body. If
Statusindicates an error, Response Body SHOUL D provide additional information about the error in aform, which can

be shown to the human user.

Acknowledgement Headers MAY be used to return some information back to the server. However, the provider MAY
ignore this parameter or support the transfer of avery limited amount of data.

Thefollowing figureillustrates the flow of primitivesin a complete transaction.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 29(122)

Client Provider Server
S-MethodInvoke.req
~~~~~ ~———_ S-Methodinvoke.ind
- ~———
S-MethodInvoke.res
S-Methodlnvoke.cnf e ——————
-
S-MethodResult.req
S-MethodResult.ind e ————
-
S-MethodResult.res
—_—r S-MethodResult.cnf
= T~ o

Figure 9: Completed Transaction

If the transaction is aborted for any reason, an S-MethodAbort.indication will be delivered to the service user. It can
occur instead of one of the shown indication or confirm primitives or after one of them. Once the abort indication is
delivered, no further primitives related to the transaction can occur.

The session layer does not provide any sequencing between multiple overlapping method invocations, so the
indications may be delivered in a different order than the corresponding requests. The same applies also to the
responses and confirmations, as well asto the corresponding S-MethodResult primitives. The end result isthat the
results of method invocations may be delivered in an order different from the original order of the requests. The
following figureillustrates this (omitting the responses and confirmations for clarity).

Provider
Methodinvoke 1 —— =t
Methodinvoke 2 —F;__::\
“N;--~-4+———» Methodinvoke 2
~— m Methodinvoke 1
Methodinvoke3 ——— =~ _ _-t4—— MethodResult 2
/,/;“‘\-—» Methodinvoke 3
MethodResult 2 ~a———"" Ja—— MethodResult 1
o o t@—— MethodResult 3

MethodResult3 —~*———— 72~

MethodResult 1 --——-

Figure 10: Unordered Asynchronous Requests

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000
Page 30(122)

6.3.3.8 S-MethodAbort

This primitive is used to abort an operation request, which is not yet complete. It can be invoked only after a preceding
S-MethodInvoke primitive has occurred. Itis part of the Method I nvocation facility.

Primitive S-MethodAbort
Parameter req ind
Transaction Id M M
Reason — M

The service user in the client uses Transaction Id to distinguish between pending transactions, wheninvoking
S-MethodAbort.request. It MUST match the Client Transaction Id of a previous S-MethodInvoke.request, for which S-
M ethodResult.response has not yet occurred. The Transaction Id of the S-MethodAbort.indication in the server will in
this case match the Server Transaction Id of that transaction.

The service user in the server uses Transaction Id to distinguish between pending transactions, wheninvoking
S-MethodAbort.request. It MUST match the Server Transaction Id of aprevious S-Methodlnvoke.indication, for which
S-MethodResult.confirm has not yet occurred. The Transaction Id of the S-MethodAbort.indication in the client will in
this case match the Client Transaction Id of that transaction.

Reason is the reason for aborting the transaction. 1t will be PEERREQ), if the peer invoked S-MethodAbort.request.

There are two scenarios depending on the timing of the primitives.

Client Provider Server

S-MethodInvoke.req

_— -

S-MethodAbort.req .

_— N,
————— N

S-MethodAbort.ind N
- ———

Figure 11: Abort before S-MethodlInvoke.indication

Thefirst scenario is shown inFigure 11. The abort request is submitted, while the method invocation is still being
communicated to the provider peer, before the S-Methodlnvoke.indication has occurred. Inthis case, the transactionis
aborted without the peer user ever being notified about the transaction.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000
Page 31(122)

S-Methodinvoke.req

— . S-Methodlnvoke.ind
el N .
S-MethodAbort.req
e S-MethodAbort.ind
T =~ B ————————

S-MethodAbort.ind

-t

Figure 12: Abort after S-MethodInvoke.indication

The second scenario is shown in Figure 12. The abort request is communicated to the provider peer after the
S-Methodlnvoke.indication has occurred. In this case, the S-MethodAbort.indication will occur aswell, and the
application MUST NOT invoke any further S-MethodInvoke or S-MethodResult primitives applying to the aborted
transaction.

The S-MethodAbort primitive may beinvoked in the client at any time between S-MethodI nvoke.request and
S-MethodResult.response for the transaction to be aborted. Likewise, S-MethodAbort may be invoked in the server at
any time between S-Methodl nvoke.indication and S-MethodResult.confirm.

6.3.3.9 S-Push

This primitive is used to send unsolicited information from the server within the session context in a non-confirmed
manner. This primitive is part of the Push facility.

Primitive S-Push
Par ameter Req | ind
Push Headers o C(=)
Push Body 6] C(=)

If the location of the pushed entity needs to be indicated, the Content-L ocation header [RFC2616] SHOULD be included
in Push Headers to ensure interoperability.

Client

A

S-Push.ind

Provider

——

Server

S-Push.req

Figure 13: Non-confirmed Data Push

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.



Approved Version 4-May-2000
Page 32(122)

Delivery of information to the peer is not assured, so the following scenario is aso permitted:

Client Server
Provider

S-Push.req

Figure 14: Failed Non-confirmed Data Push

6.3.3.10 S-ConfirmedPush

This primitiveis used send unsolicited information from the server within the session context in a confirmed manner. It is
part of the Confirmed Push facility.

Primitive S-ConfirmedPush
Parameter reg | ind | res | cnf
Server Push Id M - - M(=)
Client Push Id - M M(=) -
Push Headers ©) C(=) — —
Push Body ©) =) - -
Acknowledgement Headers — — O P(=)

The service user in the server can use Server Push Id to distinguish between pending pushes.
The service user in the client can use Client Push Id to distinguish between pending pushes.

If the location of the pushed entity needs to be indicated, the Content-L ocation header [RFC2616] SHOULD be included
in Push Headers to ensure interoperability.

Acknowledgement Headers MAY be used to return some information back to the server. However, the provider MAY
ignore this parameter or support the transfer of avery limited amount of data.

Client Server

S-ConfirmedPush.req

S-ConfirmedPush.ind T

S-ConfirmedPush.res

g S-ConfirmedPush.cnf

- >

Figure 15: Confirmed Data Push

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000

6.3.3.11 S-PushAbort

This primitiveis used to reject apush operation. It is part of the Confirmed Push facility.

Primitive S-PushAbort
Parameter req ind
Push Id M M
Reason M M

Page 33(122)

The service user in the client uses Push Id to distinguish between pending transactions, wheninvoking
S-PushAbort.request. 1t MUST match the Client Push Id of aprevious S-ConfirmedPush.indication. The Push Id of the
S-PushAbort.indication in the server will in this case match the Server Push 1d of a previous ConfirmedPush.request,
which has not yet been confirmed or indicated as aborted.

Reason is the reason for aborting the push. It will either be the value provided by the peer service user, or areason code
from the service provider.

The following figure shows the behaviour of S-PushAbort. It can be requested only after an
S-ConfirmedPush.indication, replacing an S-ConfirmedPush.response.

Client Server
Provider
S-ConfirmedPush.req
S-ConfirmedPush.ind | ____---=""""]
S-PushAbort.req -
[T S-PushAbort.ind
T >
S-PushAbort.ind
g

Figure 16: Aborted Confirmed Data Push

S-PushAbort.indication can also occur without the user’ s request as the result of a provider-initiated abort. In this case,
the service user in the client uses Push Id to distinguish between pending transactions. It MUST match the Client Push
Id of aprevious S-ConfirmedPush.indication

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000
Page 34(122)

6.3.4 Constraints on Using the Service Primitives

The following tables define the permitted primitive sequences on the service interface. The client and server have
separate tables, since the service is asymmetric.

Only the permitted primitives are listed on the rows; the layer prefix isomitted for brevity. Thetable entriesare
interpreted as follows:;

Table 2: Table Entry Legend

Entry: Description
— The indication or confirm primitive cannot occur.
N/A Invoking this primitive is an error. The appropriate action is alocal implementation matter.
STATE_NAME Primitive is permitted and moves the service interface view to the named state.
[1] If the number of outstanding transactions is equal to the selected Maximum Outstanding M ethod Requests

value, invoking this primitive is an error. The appropriate action is alocal implementation matter: delivery
of the primitive might be delayed, until it is permitted.

[2] If there is no outstanding transaction with a matching Transaction Id, invoking this primitive is an error. The
appropriate action is aloca implementation matter.
[3] If the Confirmed Push facility has not been selected during capability negotiation, invoking this primitive is

an error. Likewise, if there is no outstanding push with a matching Push Id. The appropriate actionis alocal
implementation matter.

[4] Possible only if the Push facility has been selected during capability negotiation.

[5] Possible only if the Confirmed Push facility has been selected during capability negotiation.

[6] If the Push facility has not been selected during capability negotiation, invoking this primitive is an error.
The appropriate action is alocal implementation matter.

[7] If the Confirmed Push facility has not been selected during capability negotiation, invoking this primitiveis
an error. The appropriate action is alocal implementation matter.

[8] If the Confirmed Push facility has not been selected during capability negotiation, invoking this primitiveis

an error. The appropriate action is alocal implementation matter. Also if the number of outstanding pushes
isegual to the selected Maximum Outstanding Push Requests value, invoking this primitive is an error. The
appropriate action isaloca implementation matter: delivery of the primitive might be delayed, until it is

permitted.

[9] If the Session Resumefacility has not been selected during capability negotiation, invoking this primitiveis
an error. The appropriate action is alocal implementation matter.

[10] Possible only if the Session Resumefacility has been selected during capability negotiation.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000

Table 3: Permitted Client Session Layer Primitives

Page 35(122)

CLIENT Session States
S-Primitive NULL CONNECTIN CONNECTED | CLOSING | SUSPENDING | SUSPENDED RESUMING
G
Connect.req CONNECTIN N/A N/A N/A N/A N/A N/A
G
Disconnect.req N/A CLOSING CLOSING N/A CLOSING CLOSING CLOSING
Methodlnvoke.req N/A [1] [1] N/A N/A N/A [1]
MethodResult.res N/A N/A [2] N/A N/A N/A N/A
MethodAbort.req N/A [2] [2] N/A N/A N/A [2]
ConfirmedPush.res N/A N/A [3] N/A N/A N/A N/A
PushAbort.req N/A N/A [3] N/A N/A N/A N/A
Suspend.req N/A N/A SUSPENDING N/A N/A N/A SUSPENDING
[9 [9
Resume.req N/A N/A RESUMING N/A RESUMING RESUMING N/A
(9 (9 (9
Connect.cnf - CONNECTED - — — - -
Exception.ind - CONNECTIN CONNECTED | CLOSING | SUSPENDING - RESUMING
G
Disconnect.ind - NULL NULL NULL NULL NULL NULL
M ethodlnvoke.cnf — — CONNECTED — — — —
MethodResult.ind — - CONNECTED - - — —
MethodAbort.ind - CONNECTIN CONNECTED CLOSING | SUSPENDING - RESUMING
G
Push.ind - - CONNECTED | CLOSING | SUSPENDING - -
[4] [4] [4]
ConfirmedPush.ind - - CONNECTED - - - -
[5]
PushAbort.ind - - CONNECTED - SUSPENDING - -
[5] [5]
Suspend.ind - - SUSPENDED - SUSPENDED - SUSPENDED
[10] [10] [10]
Resume.cnf - — - — — - CONNECTED
[10]

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.




Approved Version 4-May-2000

Table 4: Permitted Server Session Layer Primitives

Page 36(122)

SERVER Session States
S-Primitive NULL CONNECTING CONNECTED CLOSING SUSPENDED RESUMING
Connect.res N/A CONNECTED N/A N/A N/A N/A
Disconnect.req N/A CLOSING CLOSING N/A CLOSING
CLOSING
Methodlnvoke.res N/A N/A [2] N/A N/A N/A
MethodResult.req N/A N/A [2] N/A N/A N/A
MethodAbort.req N/A N/A [2] N/A N/A N/A
Push.req N/A N/A [6] N/A N/A N/A
ConfirmedPush.req N/A N/A [8] N/A N/A N/A
Resume.res N/A N/A N/A N/A N/A CONNECTED
[9]

Connect.ind CONNECTING - - - - —
Exception.ind - CONNECTING CONNECTED CLOSING - RESUMING
Disconnect.ind - NULL NULL NULL NULL NULL
Methodlnvoke.ind — — CONNECTED - - —
MethodResult.cnf — — CONNECTED - - —
MethodAbort.ind - - CONNECTED CLOSING - —
ConfirmedPush.cnf — — CONNECTED - - -

[5]
PushAbort.ind - - CONNECTED CLOSING - -

[5] (5]
Suspend.ind - - SUSPENDED - - SUSPENDED

[10] [10]
Resume.ind - - RESUMING [10Q] - RESUMING [10] —

Thelife cycles of transactionsin the client and the server are defined by the following two tables. Once again, only the
permitted primitives are listed on the rows.

Table 5: Permitted Client Transaction Primitives

CLIENT Transaction States
S-Primitive NULL REQUESTING WAITING COMPLETING ABORTING
Methodlnvoke.req | REQUESTING N/A N/A N/A N/A
MethodResult.res N/A N/A N/A NULL N/A
MethodAbort.req N/A ABORTING ABORTING ABORTING N/A
Methodlnvoke.cnf - WAITING - - -
MethodResult.ind - - COMPLETIN - -
G
MethodAbort.ind - NULL NULL NULL NULL

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.




Approved Version 4-May-2000

Table 6: Permitted Server Transaction Primitives

Page 37(122)

SERVER Transaction States

S-Primitive NULL REQUESTING | PROCESSING REPLYING ABORTING
MethodInvoke.res N/A PROCESSING N/A N/A N/A
MethodResult.req N/A N/A REPLYING N/A N/A
MethodAbort.req N/A ABORTING ABORTING ABORTING N/A
Methodinvoke.ind | REQUESTING - -
MethodResult.cnf - - - NULL -
MethodAbort.ind NULL NULL NULL NULL

Thelife cycles of confirmed push transactions in the server and the client are defined by the following two tables. Once
again, only the permitted primitives are listed on the rows.

Table 7: Permitted Server Confirmed Push Primitives

SERVER Confirmed Push States
S-Primitive NULL PUSHING
ConfirmedPush.req PUSHING N/A
ConfirmedPush.cn NULL
f
PushAbort.ind NULL

Table 8: Permitted Client Confirmed Push Primitives

CLIENT Confirmed Push States
S-Primitive NULL RECEIVING ABORTING
ConfirmedPush.res N/A NULL N/A
PushAbort.req N/A ABORTING N/A
ConfirmedPush.ind RECEIVING - -
PushAbort.ind NULL NULL

6.3.5 Error Handling

The connection-mode session service provider uses afour-tier strategy in handling errors and other exceptional

conditions:

2.

3.

4.

If an exceptional condition is not related to any particular transaction, it is reported through the Exception
Reporting facility without disturbing the overall state of the session.
Errorsrelated to a particular transaction cause a method or push abort indication with the appropriate reason code
without disturbing the overall state of the session.
Conditions which prevent the session peers from communicating with each other will cause suspend indications, if
the Session Resume facility is selected. Otherwise they will cause a disconnection to beindicated.

Other errorswill cause a session disconnect to be indicated with the appropriate reason code.

Certain race conditions may cause the abort reason code of a method or push transaction to be reported as
DISCONNECT, but this must not be interpreted asindicating that the session has been disconnected; session
disconnection isindicated always only using the S-Disconnect primitive.

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.



Approved Version 4-May-2000
Page 38(122)

6.4 Connectionless Session Service

6.4.1 Overview

The connectionless session service provides non-confirmed facilities, which can be used to exchange content entities
between layer users. The provided serviceisasymmetric in amanner similar to the connection-mode service.

Only the Method Invocation and Push facilities are available. The facilities are non-confirmed, so the communication
between the peer entitiesMAY be unreliable.

6.4.2 Service Primitives

The service primitives are defined using types from the Service Parameter Types section.

6.4.2.1 S-Unit-Methodlnvoke

This primitiveis used to invoke a method in the server in anon-confirmed manner. It is part of the Method Invocation
facility.

Primitive S-Unit-Methodl nvoke
Par ameter req | ind
Server Address M M(=)
Client Address M M(=)
Transaction Id M M(=)
Method M M(=)
Request URI M M(=)
Request Headers O C(=)
Reguest Body C C(=)

Server Addressidentifies the peer to which the request is to be sent.
Client Address identifies the originator of the request.

The service users MAY use Transaction Id to distinguish between transactions. It is communicated transparently from
service user to service user.

Method identifies the requested operation, which must be one of the HT TP methods [RFC2616].
Request URI specifies the entity to which the operation applies.
Reguest Headers are alist of attribute information semantically equivalent to HTTP headers [RFC2616].

Request Body is the data associated with the request, which is semantically equivalent to HTTP entity body. If the
request Method is not defined to allow an entity-body, Request Body MUST NOT be provided [RFC2616).

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000
Page 39(122)

6.4.2.2 SUnit-MethodResult

This primitive is used to return the result of amethod invocation from the server in anon-confirmed manner. It is part of
the Method Invocation facility.

Primitive S-Unit-MethodResult
Par ameter reg | ind
Client Address M M(=)
Server Address M M(=)
Transaction Id M M(=)
Status M M(=)
Response Headers (@) C(®)
Response Body C C(=2)

Client Addressidentifies the peer to which the result isto be sent.

Server Addressidentifiesthe originator of the result.

The service users MAY use Transaction Id to distinguish between transactions.

Statusis semantically equivalent to an HTTP status code [RFC2616].

Response Headers are alist of attribute information semantically equivalent to HTTP headers [RFC2616].

Response Body is the data associated with the response, which is semantically equivalent to an HTTP entity body. If

Statusindicates an error, Response Body SHOUL D provide additional information about the error in aform, which can
be shown to the human user.

6.4.2.3 S-Unit-Push

This primitive is used to send unsolicited information from the server to the client in anon-confirmed manner. It is part
of the Push facility.

Primitive S-Unit-Push
Par ameter reg | ind
Client Address M M(=)
Server Address M M(=)
Push 1d M M(=)
Push Headers (@) C(®)
Push Body (6] C(®)

Client Addressidentifies the peer to which the push isto be sent.
Server Addressidentifiesthe originator of the push.
The service users MAY usePush Id to distinguish between pushes.

If the location of the pushed entity needs to be indicated, the Content-L ocation header [RFC2616] SHOULD be included
in Push Headers to ensure interoperability.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000

Page 40(122)

6.4.3 Constraints on Using the Service Primitives

The service user MAY invoke the permitted request primitives at any time, once the underlying layers have been
prepared for communication. Thisis expected to occur through the appropriate interactions with management entities,
which are not part of this specification. A failureto do soisan error, and the appropriate action isalocal

implementation matter.

The service provider SHOULD deliver an indication primitive when it is notified that the corresponding request primitive
has been invoked by a peer user entity.

The following table defines the primitives, which the client and server entities are permitted to invoke.

Table 9: Connectionless service primitives

Generic Name Type Description
req | ind | res | cnf
S-Unit-Methodlnvoke C S - - Invoke a method in the server with no confirmation
S-Unit-MethodResult S C - - Return response from the server with no confirmation
S-Unit-Push S C - - Push content with no confirmation

- —Primitive may not occur
C — Primitive may occur on the client
S—Primitive may occur on the server

A failureto conform to these restrictionsis an error. The appropriate action isalocal implementation matter.

6.4.4 Error Handling

If arequest cannot be communicated to the provider peer, the connectionless session service provider will not generate
any indication primitive. Detection of exceptional conditions and appropriate actions are alocal implementation matter.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000
Page 41(122)

7 WSP Protocol Operations

This section describes the protocols used between session service peers to realise functions described in the abstract
serviceinterface definition.

7.1 Connection-Mode WSP

This section describes the operations of WSP over the WTP transaction service [WTP].

7.1.1 Utilisation of WTP

The WTP transaction classes utilised by each WSP facility is summarised in Table 10.

Table 10. Utilisation of WTP

WSP Facility WTP Transaction Classes
Session Management Class 0 and Class 2
Method Invocation Class 2

Session Resume Class 0 and Class 2

Push Class0

Confirmed Push Class1

A connection-mode WSP client MUST support initiation of WTP Class 0 and Class 2 transactions. The client SHOULD
accept Class 0 transaction invocations from the server, so that the server is able to disconnect the session explicitly. If
the client is to support the push facilities, it MUST accept transactions in the class, which the table above defines to be
used by each push facility.

7.1.2 Protocol Description
Thefollowing diagramsillustrate the use of atransaction service by the session facilities. The specific details of how
the protocol works are expressed in the state tablesin section 7.1.6, “ State Tables”, below. Any discrepancy between

the diagrams and the state tables shall be decided in favour of the state tables.

The dashed arrows represent the WTP protocol messages carrying acknowledgements and WSP PDUs as their data; the
messages indicated by parallel arrows are likely to be concatenated into a single transport datagram.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000
Page 42(122)

7.1.2.1 Session Management Facility

Normal session creation proceeds without any error or redirection as shown in Figure 17.

Client Server

WTP Class 2 Transaction
S-Connect.req ———p—__

| Connect |

T-—=>  » S-Connect.ind

- __——t4¢—— S-Connect.res
| ConnectReply |
S-Connect.cnf ¢——&=""

-

—_——
~
\\‘>

Figure 17. Normal Session Creation
Session creation wherein the client is redirected to another server is shown in Figure 18.

Client Server

WTP Class 2 Transaction
S-Connect.req ———p—_

| Connect |

T-—=>  » S-Connect.ind

- _—4«—— S-Disconnect.req
| Redirect [ (Status == Moved ...)

S-Disconnect.ind ¢——<&=—""" L » S-Disconnect.ind

—
-_—
~
\\‘>

Figure 18. Session Creation with Redirect

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000
Page 43(122)

Session creation wherein the server session user refuses to accept the session is shown in Figure 19.

Client Server

WTP Class 2 Transaction
S-Connect.req ———p—__

| Connect |
T~ » S-Connectind
’,,/z”’/ __——4—— S-Disconnect.req
| Reply | ——p S-Disconnect.ind

S-Disconnect.ind ¢——&—""

—
-_—
~
\\‘>

Figure 19. Session Creation with Server Error

Session termination is shown in Figure 20.

Client/Server Server/Client

WTP Class 0 Transaction
S-Disconnect.req ———pf—_
S-Disconnect.ind Disconnect
S-Disconnect.ind

Figure 20. Session Termination

7.1.2.2 Session Resume Facility

Session suspend is shown in Figure 21.

Client Server

WTP Class 0 Transaction

S-Suspend.req ——
S-Suspend.ind |  Suspend |

~—

= S-Suspend.ind

Figure 21. Session Suspend

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.



Approved Version 4-May-2000

When session resume succeeds, it proceeds as shown in Figure 22.

Client

S-Resume.req ———p

WTP Class 2 Transaction

|  Resume |

S-Resume.cnf 44—~

—
-_—
~
\\‘>

T  » SResume.ind

—¢—— S-Resumeres

Figure 22. Normal Session Resume

A session resume wherein the server session user refuses to resume the session is shown in Figure 23.

Client

S-Resume.req ———p

S-Disconnect.ind ¢——

Server
WTP Class 2 Transaction
|  Resume |
T » SResumeind

’,,/z”"/ _ _—4—— S-Disconnect.req

| Reply | ——p S-Disconnect.ind
(="

~~~

Figure 23. Session Resume with Server Error

Page 44(122)

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 45(122)

7.1.2.3 Method Invocation Facility

A method invocation is shown in Figure 24.

Client Server

WTP Class 2 Transaction

~a

S-Methodinvoke.reg ——p—_

[Method |
T~ » SMethodlinvoke.ind
___——4—— SMethodinvokeres
,//"”,/ _l€¢—— S-MethodResult.r
S-Methodinvoke.cnf —= — &
| Reply |

S-MethodResult.ind €—<—~
S-MethodResult.res — pl

= » S-MethodResult.cnf

Figure 24. Normal Method Invocation

7.1.2.4 Push Facility

An unconfirmed push is shown in Figure 25.

Client Server

WTP Class 0 Transaction
— S-Push.req

—

Push [

S-Push.ind =

Figure 25. Push Invocation

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 46(122)

7.1.2.5 Confirmed Push Facility
A confirmed push is shown in Figure 26.

Client Server

WTP Class 1 Transaction

_ 1¢—— S-ConfirmedPush.req

—_

| ConfirmedPush [

S-ConfirmedPush.ind €¢——&——

S-ConfirmedPush.res ——p~ _

T~ » S-ConfirmedPush.cnf

Figure 26. Confirmed Push Invocation

7.1.3 Protocol Parameters

The protocol state machine uses the following parameters.

7.1.3.1 Maximum Receive Unit (MRU)

The Maximum Receive Unit (MRU) isthe size of the largest SDU the session layer can accept from the underlying
service provider. Theinitial valueis set to the default SDU sizes as specified in section 8.3.3, “ Capability Defaults”,
below. The value can be modified during capability negotiation.

7.1.3.2 Maximum Outstanding M ethod Requests (MOM)

The Maximum Outstanding Method Requests (MOM) is the number of method transactions that can be outstanding at
agiventime. Theinitial valueis set to the default MOM as specified in section 8.3.3, “ Capability Defaults”, below. The
value can be modified during capability negotiation.

7.1.3.3 Maximum Outstanding Push Requests (MOP)

The Maximum Outstanding Push Requests (MOP) is the number of push transactions that can be outstanding at a given
time. Theinitial valueis set to the default MOP as specified in section 8.3.3, “ Capability Defaults”, below. The value can
be modified during capability negotiation.

7.1.4 Variables

The protocol state machine uses the following variables.

7.1.4.1 N_Methods

N_Methods keeps track of the number of method transactions in processin the server.

7.1.4.2 N_Pushes

N_Pushes keepstrack of the number of push transactionsin processin the client.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 47(122)

7143 Sesson_ID

Session_ID saves the session identifier assigned by the server in both the client and the server. The method used to
assign the identifiers must be chosen so that a session identifier value cannot be repeated during the lifetime of a
message in the used transport network; otherwise the session management logic may be confused.

7.1.5 Event Processing

Sessions are associated with a peer address quadruplet, ie, the client address, client port, server address, and server
port. Incoming transactions are assigned to a particular session based on the peer address quadruplet. Asa
conseguence, the peer address quadrupl et isthe true unique protocol-level identifier of asession. There can be only
one session bound to a peer address quadruplet at atime.

In order to create a new session for a particular peer address quadrupl et when one already appears to exist, the server
session provider must allow for the creation of aproto-session. Thisisasecond, constrained instance of a session that
is used to process the session creation transaction on the server, ie, the Connect and ConnectReply PDUs; thisis
detailed in the table below.

Indications and confirmations from the transaction layer are termed events. Each event is validated and then processed
according to the protocol state tables. The protocol state tables al so use pseudo-events to trigger state changes within
the protocol implementation itself. Pseudo-events are generated by the actionsin protocol state machines or by the
implementation itself, whenever thisis considered appropriate. For instance, they may represent the effect of a
management operation, which destroys a session that has been inactive for too long a period.

These pseudo-events are identified by namesinltalics, and are defined as follows:

Pseudo-Event Description

Abort Abort amethod or push transaction
Release Allow amethod transaction to proceed
Suspend Suspend the session

Disconnect Disconnect the session

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Page 48(122)

Incoming transaction invocations are validated before being processed according to the state tables; the following tests

are performed; and if no action istaken, the event is processed according to the state table.

Test Action
TR-Invoke.ind with SDU size > MRU TR-Abort.req(MRUEX CEEDED) the TR-Invoke
Class 2 TR-Invoke.ind, on server, Connect PDU a) Create anew proto-session that is responsible for processing the

remainder of the Connect transaction.
b) The proto-session signals S-Connect.indication to the session user.
c) If the session user accepts the new session by invoking
S-Connect.response, the proto-session isturned into a new session
for the peer address quadruplet. Disconnect isinvoked on any old
sessions bound to that quadruplet.

session identified by the peer address quadruplet.
If the Sessionld is not valid, ie, the session does not exist,
TR-Abort.reg(DISCONNECT) the TR-Invoke.

Class 2 TR-Invoke.ind, on server, Resume PDU Pass to session identified by the Sessionld in Resume PDU instead of the

Class 1-2 TR-Invoke.ind, no session matching the peer [TR-Abort.req(DISCONNECT) the TR-Invoke
address quadrupl et

Class 1-2 TR-Invoke.ind PDU not handled by state TR-Abort.req(PROTOERR) the TR-Invoke

tables

Class 0 TR-Invoke.ind PDU not handled by state tables | Ignore

Any other event not handled by state tables TR-Abort.req(PROTOERR) if it is some other transaction event than
abort

Abort(PROTOERR) all method and push transactions
S-Disconnect.ind(PROTOERR)

The service provided by the underlying transaction layer is such that a protocol entity cannot reliably detect that the
peer has discarded the session state information, unless a method or push transaction isin progress. This may
eventually result in alarge number of sessions, which no longer have any peer protocol entity. Theimplementation
SHOULD be able to Disconnect sessions, which are considered to be in such a state.

7.1.6 State Tables

The following state tables define the actions of connection-mode WSP. Because multiple methods and pushes can
occur at the same time, there are three state tables defined for client and server: one for the session states, one for the
states of amethod and one for the states of a push.

The state names used in the tables are logically completely separate from the states defined for the abstract service
interface, although the names may be similar. Typically aparticular state at the service interface mapsinto a protocol
state with the same name, but a state also may map into multiple or no protocol states at all.

A single Event may have several entriesin the Condition column. In such a case the conditions are expected to be
evaluated row by row from top to bottom with the most specific condition being the first one. A single Condition entry
may contain several conditions separated with acomma™,". In this case all of these have to be satisfied in order for the
condition to betrue.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

7.1.6.1 Client Session State Tables

Page 49(122)

The following tables show the session states and event processing that occur on the client when using atransaction

service.

Client Session NUL L

Event

Conditions

Action

Next State

SConnect.req

Disconnect any other session for the peer address
quadruplet.

TR-Invoke.reg(Class 2, Connect)

N_PUSHES =0

CONNECTING

Client Sesson CONNECTING

Event

Conditions

Action

Next State

SDisconnect.req

T R-Abort.req(DISCONNECT) the Connect
Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(USERREQ)

NULL

Disconnect

T R-Abort.req(DISCONNECT) the Connect
Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(DISCONNECT)

NULL

SMethodInvoke.req

Start a new method transaction with this event
(see method state table)

SMethodAbort.req

See method state table

Suspend

T R-Abort.req(DISCONNECT) the Connect
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(SUSPEND)

NULL

TR-Invoke.ind

Class 1,
ConfirmedPush PDU

TR-Abort.req(PROTOERR) the TRInvoke

TR-Result.ind

Connect transaction,
SDU size> MRU

T R-Abort.req(MRUEX CEEDED) the Connect
Abort(CONNECTERR) al outstanding method
transactions

S-Disconnect.ind(MRUEX CEEDED)

NULL

Connect transaction,
ConnectReply PDU

T R-Result.res
Session_ID = Sessionld from PDU
S-Connect.cnf

CONNECTED

Connect transaction,
Redirect PDU

TR-Result.res
Abort(CONNECTERR) all method transactions
S-Disconnect.ind(Redirect parameters)

NULL

Connect transaction,
Reply PDU

TR-Result.res
Abort(CONNECTERR) all method transactions
S-Disconnect.ind(Reply parameters)

NULL

Method Transaction

Abort (PROTOERR) the method transaction

Other

TR-Abort.req(PROTOERR)
Abort(CONNECTERR) al outstanding method
transactions

S-Disconnect.ind(PROTOERR)

NULL

TR-Invoke.cnf

Connect transaction

Ignore

Method transaction

Abort(PROTOERR) method transaction

TR-Abort.ind

Connect transaction

Abort(CONNECTERR) al outstanding method
transactions
S-Disconnect.ind(abort reason)

NULL

Method transaction

See method state table

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 50(122)

Client Sesson CONNECTED
Event Conditions Action Next State
SDisconnect.req Abort(DISCONNECT) all method and push transactions NULL
T R-Invoke.reg(Class 0, Disconnect)
S-Disconnect.ind(USERREQ)
Disconnect Abort(DISCONNECT) al method and push transactions NULL
S-Disconnect.ind(DISCONNECT)
SMethodlnvoke.req Start a new method transaction with this event
S MethodResult.res See method state table
SMethodAbort.req See method state table
S-ConfirmedPush.res See push state table
SPushAbort.req See push state table
S-Suspend.req Abort(SUSPEND) all method and push transactions SUSPENDED
T R-Invoke.req(Class 0, Suspend)
S-Suspend.ind(USERREQ)
Suspend Session Resume facility Abort(DISCONNECT) all method and push transactions NULL
disabled S-Disconnect.ind(SUSPEND)
Session Resume facility Abort(SUSPEND) all method and push transactions SUSPENDED
enabled S Suspend.ind(SUSPEND)
SResume.req Abort(USERREQ) all method and push transactions RESUMING
Bind session to the new peer address quadruplet
T R-Invoke(Class 2, Resume)
TR-Invoke.ind Class 0, Abort(DISCONNECT) al method and push transactions NULL
Disconnect PDU S-Disconnect.ind(DISCONNECT)
Class 0, S-Push.ind
Push PDU,
Push facility enabled
Class 1, Start a new push transaction with this event
ConfirmedPush PDU,
Confirmed Push facility
enabled
T R-Result.ind Method transaction See method state table
T R-Invoke.cnf Method transaction See method state table
TR-Abort.ind Method transaction See method state table
Push transaction See push state table
Client Session SUSPENDED
Event Conditions Action Next State
S-Disconnect.req S-Disconnect.ind(USERREQ) NULL
Disconnect S-Disconnect.ind(DISCONNECT) NULL
S Resume.req TR-Invoke.req(Class 2, Resume) RESUMING
TR-Invoke.ind Class 0, S-Disconnect.ind(DISCONNECT) NULL
Disconnect PDU
Class 1, T R-Abort.req(SUSPEND) the TR Invoke
ConfirmedPush PDU,
Confirmed Push facility
enabled
T R-Invoke.cnf Ignore
TR-Abort.ind Ignore

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 51(122)

Client Session RESUMING

S Suspend.ind(abort reason)

Event Conditions Action Next State
SDisconnect.req T R-Abort.req(DISCONNECT) the Resume NULL
Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(USERREQ)
Disconnect TR-Abort.req(DISCONNECT) the Resume NULL
Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(DISCONNECT)
SMethodlnvoke.req Start a new method transaction with this event
(see method state table)
S MethodAbort.req See method state table
S Suspend.req T R-Abort.req(SUSPEND) the Resume SUSPENDED
Abort(SUSPEND) all outstanding method transactions
T R-Invoke.req(Class 0, Suspend)
S-Suspend.ind(USERREQ)
Suspend T R-Abort.req(SUSPEND) the Resume SUSPENDED
Abort(SUSPEND) all outstanding method transactions
S Suspend.ind(SUSPEND)
TR-Invoke.ind Class 0, T R-Abort.req(DISCONNECT) the Resume NULL
Disconnect PDU Abort(DISCONNECT) all outstanding method transactions
S-Disconnect.ind(DISCONNECT)
Class 1, T R-Abort.req(PROTOERR) the TR Invoke
ConfirmedPush PDU,
Confirmed Push facility
enabled
TR-Result.ind Resume transaction, T R-Abort.req(MRUEXCEEDED) the TR Result SUSPENDED
SDU size> MRU Abort(SUSPEND) all outstanding method transactions
S-Suspend.ind(MRUEX CEEDED)
Resume transaction, TR-Result.res CONNECTED
Reply PDU (status == OK) | S-Resume.cnf
Resume transaction, TR-Result.res NULL
Reply PDU (status != OK) | Abort(DISCONNECT) al outstanding method transactions
S-Disconnect.ind(Reply parameters)
Method Transaction Abort(PROTOERR) the method transaction
Other T R-Abort.req(PROTOERR) the TR-Result SUSPENDED
Abort(SUSPEND) all outstanding method transactions
S-Suspend.ind(PROTOERR)
TR-Invoke.cnf Resume transaction Ignore
Method transaction Abort(PROTOERR) method transaction
TR-Abort.ind Resume transaction, Abort(DISCONNECT) al outstanding method transactions | NULL
Reason == DISCONNECT | SDisconnect.ind(DISCONNECT)
Resume transaction Abort(SUSPEND) all outstanding method transactions SUSPENDED

Method transaction

See method state table

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 52(122)

7.1.6.2 Client Method State Tables

The following tables show the method states and event processing that occur on the client when using a transaction

service.
Client Method NUL L
Event Conditions Action Next State
SMethodlnvoke.req T R-Invoke.req(Class 2, Method) REQUESTING
Note: “ Method” means either the Get or Post PDU using
the PDU type assigned to the particular method.
Client Method REQUESTING
Event Conditions Action Next State
SMethodAbort.req T R-Abort.req(PEERREQ) the Method NULL
S MethodAbort.ind(USERREQ)
Abort T R-Abort.reg(abort reason) the Method NULL
S-MethodAbort.ind(abort reason)
T R-Invoke.cnf S-Methodlnvoke.cnf WAITING
TR-Abort.ind Reason == DISCONNECT | Disconnect the session
Reason == SUSPEND Suspend the session
Other S MethodAbort.ind(abort reason) NULL
Client Method WAITING
Event Conditions Action Next State
SMethodAbort.req TR-Abort.req(PEERREQ) the Method NULL
S MethodAbort.ind(USERREQ)
Abort T R-Abort.reg(abort reason) the Method NULL
S MethodAbort.ind(abort reason)
T R-Result.ind SDU size > MRU TR-Abort.req(MRUEX CEEDED) NULL
S-MethodAbort.ind(MRUEXCEEDED)
Reply PDU S-MethodResult.ind COMPLETING
Other TR-Abort.req(PROTOERR) NULL
S-MethodAbort.ind(PROTOERR)
TR-Abort.ind Reason == DISCONNECT | Disconnect the session
Reason == SUSPEND Suspend the session
Other S-MethodAbort.ind(abort reason) NULL
Client Method COMPLETING
Event Conditions Action Next State
SMethodResult.res T R-Result.res(Exit Info = Acknowledgement Headers) NULL
Note: support for Acknowledgement Headers depends on
successful negotiation of the Acknowl edgement Headers
protocol feature
SMethodAbort.req T R-Abort.req(PEERREQ) the Method NULL
S MethodAbort.ind(USERREQ)
Abort T R-Abort.reg(abort reason) the Method NULL
S-MethodAbort.ind(abort reason)
TR-Abort.ind Reason == DISCONNECT | Disconnect the session
Reason == SUSPEND Suspend the session
Other S MethodAbort.ind(abort reason) NULL

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 53(122)

7.1.6.3 Client Push State Tables

The following tables show the push states and event processing that occur on the client when using atransaction

service.
Client Push NULL
Event Conditions Action Next State
TR-Invoke.ind Class 1, T R-Abort.req(MOREXCEEDED) the TR Invoke NULL
ConfirmedPush PDU,
N_PUSHES == MOP
Class 1, Increment N_PUSHES RECEIVING
ConfirmedPush PDU, S-ConfirmedPush.ind
N_PUSHES < MOP
Client Push RECEIVING
Event Conditions Action Next State
S-ConfirmedPush.res TR-Invoke.res(Exit Info = Acknowledgement Headers) NULL
Note: support for Acknowledgement Headers depends on
successful negotiation of the Acknowl edgement Headers
protocol feature
Decrement N_PUSHES
SPushAbort.req T R-Abort.req(abort reason) the TR Invoke NULL
S-PushAbort.ind(USERREQ)
Decrement N_PUSHES
Abort TR-Abort.req(abort reason) the TR Invoke NULL
S-PushAbort.ind(abort reason)
Decrement N_PUSHES
TR-Abort.ind Reason == DISCONNECT | Disconnect the session
Reason == SUSPEND Suspend the session
Other S-PushAbort.ind(abort reason) NULL
Decrement N_ PUSHES

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

7.1.6.4 Server Session State Tables

Page 54(122)

The following tables show the session states and event processing that occur on the server when using atransaction

service.

Server Session NUL L

Event Conditions

Action

Next State

TR-Invoke.ind Class 2,

Connect

TR-Invoke.res
N_Methods =0
S-Connect.ind

CONNECTING

Server Session CONNECTING

Event Conditions

Action

Next State

S-Connect.res

Disconnect any other session for this peer address
quadruplet.

Assign a Session_ID for this session.

T R-Result.reg(ConnectReply)

Release all method transactions in HOLDING state

CONNECTING_2

Reason Code == Moved
Permanently or Moved
Temporarily

SDisconnect.req

T R-Result.reg(Redirect)
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(USERREQ)

TERMINATING

Other

T R-Result.req(Reply(status = Reason Code))
Abort(DISCONNECT) al method transactions
S-Disconnect.ind(USERREQ)

TERMINATING

Disconnect

TR-Abort.req(DISCONNECT) the Connect transaction
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(DISCONNECT)

NULL

Suspend

T R-Abort.req(DISCONNECT) the Connect transaction
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(SUSPEND)

NULL

TR-Invoke.ind Class 2,

Method

Start new method transaction (see method state table)

Class 2,
Resume

T R-Abort.req(DISCONNECT) the TRInvoke

TR-Abort.ind Connect transaction

Abort(DISCONNECT) all method transactions
S-Disconnect.ind(abort reason)

NULL

Method transaction

See method state table

Server Sesson TERMINATING

Event Conditions

Action

Next State

Disconnect

T R-Abort.req(DISCONNECT) remaining transport
transaction

NULL

Suspend

TR-Abort.reqg(DISCONNECT) remaining transport
transaction

NULL

T R-Result.cnf

Ignore

NULL

TR-Abort.ind

Ignore

NULL

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Page 55(122)

Server Sesson CONNECTING 2
Event Conditions Action Next State
SDisconnect.req T R-Abort.req(DISCONNECT) the Connect transaction NULL
Abort(DISCONNECT) all method and push transactions
TR-Invoke.req(Class 0, Disconnect)
S-Disconnect.ind(USERREQ)
Disconnect T R-Abort.req(DISCONNECT) the Connect transaction NULL
Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)
SMethodInvoke.res See method state table
S MethodResult.req See method state table
SMethodAbort.req See method state table
SPush.req T R-Invoke.req(Class 0, Push)
S-ConfirmedPush.req Start new push transaction (see push state table)
Suspend Session Resume facility T R-Abort.req(DISCONNECT) the Connect transaction NULL
disabled Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(SUSPEND)
Session Resume facility T R-Abort.req(SUSPEND) the Connect transaction SUSPENDED
enabled Abort(SUSPEND) all method and push transactions
S-Suspend.ind(SUSPEND)
TR-Invoke.ind Class 2, Start new method transaction (see method state table)
Method Release the new method transaction
Class 2, TR-Abort.req(DISCONNECT) the TR-Invoke
Resume,
Session Resume facility
disabled
Class 2, TR-Invoke.res RESUMING
Resume, T R-Abort.req(RESUME) the Connect transaction
Session Resume facility Abort(RESUME) all method and push transactions
enabled S-Suspend.ind(RESUME)
S-Resume.ind
Class 0, T R-Abort.req(DISCONNECT) the Connect transaction NULL
Disconnect Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)
Class 0, TR-Abort.req(SUSPEND) the Connect transaction SUSPENDED
Suspend, Abort(SUSPEND) all method and push transactions
Session Resume facility S Suspend.ind(SUSPEND)
enabled
T R-Invoke.cnf Push transaction See push state table
T R-Result.cnf Connect transaction CONNECTED
Method transaction See method state table
TR-Abort.ind Connect transaction Abort(DISCONNECT) al method and push transactions NULL
S-Disconnect.ind(abort reason)
Push transaction See push state table
Method transaction See method state table

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 56(122)

Server Sesson CONNECTED
Event Conditions Action Next State
SDisconnect.req Abort(DISCONNECT) all method and push transactions NULL
T R-Invoke.reg(Class 0, Disconnect)
S-Disconnect.ind(USERREQ)
Disconnect Abort(DISCONNECT) al method and push transactions NULL
S-Disconnect.ind(DISCONNECT)
S MethodInvoke.res See method state table
S MethodResult.reg See method state table
SMethodAbort.req See method state table
S-Push.req T R-Invoke.reg(Class 0, Push)
S-ConfirmedPush.req Start new push transaction (see push state table)
Suspend Session Resume facility Abort(DISCONNECT) all method and push transactions NULL
disabled S-Disconnect.ind(SUSPEND)
Session Resume facility Abort(SUSPEND) all method and push transactions SUSPENDED
enabled S-Suspend.ind(SUSPEND)
TR-Invoke.ind Class 2, Start new method transaction (see method state table)
Method Release the new method transaction
Class 2, TR-Abort.req(DISCONNECT) the TR-Invoke
Resume,
Session Resume facility
disabled
Class 2, TR-Invoke.res RESUMING
Resume, Abort(RESUME) all method and push transactions
Session Resume facility S Suspend.ind(RESUME)
enabled S-Resume.ind
Class 0, Abort(DISCONNECT) all method and push transactions NULL
Disconnect S-Disconnect.ind(DISCONNECT)
Class 0, Abort(SUSPEND) all method and push transactions SUSPENDED
Suspend, S Suspend.ind(SUSPEND)
Session Resume facility
enabled
T R-Invoke.cnf Push transaction See push state table
T R-Result.cnf Method transaction See method state table
TR-Abort.ind Push transaction See push state table
Method transaction See method state table
Server Session SUSPENDED
Event Conditions Action Next State
S-Disconnect.req S-Disconnect.ind(USERREQ) NULL
Disconnect S-Disconnect.ind(DISCONNECT) NULL
TR-Invoke.ind Class 2, T R-Abort.req(SUSPEND) the TRInvoke
Method
Class 2, TR-Invoke.res RESUMING
Resume S-Resume.ind
Class 0, S-Disconnect.ind(DISCONNECT) NULL
Disconnect

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 57(122)

Server Sesson RESUMING

Event

Conditions

Action

Next State

SDisconnect.req

T R-Abort.req(DISCONNECT) the Resume transaction
Abort(DISCONNECT) all method transactions
TR-Invoke.req(Class 0, Disconnect)
S-Disconnect.ind(USERREQ)

NULL

Disconnect

T R-Abort.req(DISCONNECT) the Resume transaction
Abort(DISCONNECT) al method transactions
S-Disconnect.ind(DISCONNECT)

NULL

S Resumeres

Disconnect any other session for the peer address
quadruplet. Bind session to new peer address quadrupl et
T R-Result.req(Reply)

Release all method transactions in HOLDING state

RESUMING_2

Suspend

T R-Abort.req(SUSPEND) the Resume transaction
Abort(SUSPEND) all method transactions
S Suspend.ind(SUSPEND)

SUSPENDED

TR-Invoke.ind

Class 2,
Method

Start new method transaction (see method state table)

Class 2,
Resume

TR-Invoke.res

TR-Abort.req(RESUME) the old Resume transaction
Abort(RESUME) all method transactions

S Suspend.ind(RESUME)

S-Resume.ind

Class 0,
Suspend

T R-Abort.req(SUSPEND) the Resume transaction
Abort(SUSPEND) all method transactions
S Suspend.ind(SUSPEND)

SUSPENDED

Class 0,
Disconnect

T R-Abort.req(DISCONNECT) the Resume transaction
Abort(DISCONNECT) all method transactions
S-Disconnect.ind(DISCONNECT)

NULL

TR-Abort.ind

Resume transaction,
Reason = DISCONNECT

Abort (DISCONNECT) all method transactions
S-Disconnect.ind(DISCONNECT)

NULL

Resume transaction

Abort(SUSPEND) all method transactions
S Suspend.ind(abort reason)

SUSPENDED

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 58(122)

Server Session RESUMING 2

Event

Conditions

Action

Next State

SDisconnect.req

T R-Abort.req(DISCONNECT) the Resume transaction
Abort(DISCONNECT) all method and push transactions
TR-Invoke.req(Class 0, Disconnect)
S-Disconnect.ind(USERREQ)

NULL

Disconnect

T R-Abort.req(DISCONNECT) the Resume
Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

SMethodInvoke.res

See method state table

S MethodResult.req

See method state table

SMethodAbort.req

See method state table

SPush.req

T R-Invoke.req(Class 0, Push)

S-ConfirmedPush.req

Start new push transaction (see push state table)

Suspend

T R-Abort.req(SUSPEND) the Resume transaction
Abort(SUSPEND) all method and push transactions
S-Suspend.ind(SUSPEND)

SUSPENDED

TR-Invoke.ind

Class 2,
Method

Start new method transaction (see method state table)
Release the new method transaction

Class 2,
Resume

TR-Invoke.res

TR-Abort.req(RESUME) the old resume transaction
Abort(RESUME) all method and push transactions
S Suspend.ind(RESUME)

S-Resume.ind

RESUMING

Class 0,
Suspend

TR-Abort.req(SUSPEND) the Resume transaction
Abort(SUSPEND) all method and push transactions
S Suspend.ind(SUSPEND)

SUSPENDED

Class 0,
Disconnect

T R-Abort.req(DISCONNECT) the Resume
Abort(DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

TR-Invoke.cnf

Push transaction

See push state table

T R-Result.cnf

Resume transaction

CONNECTED

Method transaction

See method state table

TR-Abort.ind

Resume transaction,
Reason = DISCONNECT

Abort (DISCONNECT) all method and push transactions
S-Disconnect.ind(DISCONNECT)

NULL

Resume transaction

Abort(SUSPEND) all method and push transactions
S Suspend.ind(abort reason)

SUSPENDED

Push transaction

See push state table

Method transaction

See method state table

7.16.5 Server Method State Tables

The following tables show the method states and event processing that occur on the server when using a transaction

service.
Server Method NUL L

Event Conditions Action Next State
TR-Invoke.ind Class 2, T R-Abort.req(MOREXCEEDED) NULL

Method PDU,

N_Methods == MOM

Class 2, Increment N_Methods HOLDING

Method PDU

Server Method HOLDING
Event Conditions Action Next State
Release S-MethodInvoke.ind REQUESTING
Abort Decrement N_Methods NULL
T R-Abort.reg(abort reason) the method

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 59(122)

Server Method HOLDING

Event

Conditions

Action

Next State

TR-Abort.ind

Reason == DISCONNECT

Disconnect the session

Reason == SUSPEND

Suspend the session

Other

Decrement N_Methods

NULL

Server Method REQUESTING

Event

Conditions

Action

Next State

SMethodInvoke.res

TR-Invoke.res

PROCESSING

SMethodAbort.req

Decrement N_Methods
T R-Abort.req(PEERREQ) the method
S-MethodAbort.ind(USERREQ)

NULL

Abort

Decrement N_Methods
T R-Abort.reg(abort reason) the method
SMethodAbort.ind(abort reason)

NULL

TR-Abort.ind

Reason == DISCONNECT

Disconnect the session

Reason == SUSPEND

Suspend the session

Other

Decrement N_Methods
S-MethodAbort.ind(abort reason)

NULL

Server Method PROCESSING

Event

Conditions

Action

Next State

S MethodResult.reg

TR-Result.req

REPLYING

SMethodAbort.req

Decrement N_Methods
TR-Abort.req(PEERREQ) the method
S-MethodAbort.ind(USERREQ)

NULL

Abort

Decrement N_Methods
T R-Abort.reg(abort reason) the method
S-MethodAbort.ind(abort reason)

NULL

TR-Abort.ind

Reason == DISCONNECT

Disconnect the session

Reason == SUSPEND

Suspend the session

Other

Decrement N_Methods
S-MethodAbort.ind(abort reason)

NULL

Server Method REPLYING

Event

Conditions

Action

Next State

SMethodAbort.req

Decrement N_Methods
T R-Abort.req(PEERREQ) the method
S MethodAbort.ind(USERREQ)

NULL

Abort

Decrement N_Methods
T R-Abort.req(abort reason) the method
S-MethodAbort.ind(abort reason)

NULL

T R-Result.cnf

Decrement N_Methods

S MethodResult.cnf(Acknowledgement Headers = Exit
Info)

Note: support for Acknowledgement Headers depends on
successful negotiation of the Acknowl edgement Headers
protocol feature

NULL

TR-Abort.ind

Reason == DISCONNECT

Disconnect the session

Reason == SUSPEND

Suspend the session

Other

Decrement N_Methods

S-MethodAbort.ind(abort reason)

NULL

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

7.1.6.6 Server Push State Tables

Page 60(122)

The following tables show the push states and event processing that occur on the server when using atransaction

service.
Server Push NUL L
Event Conditions Action Next State
S-ConfirmedPush.req T R-Invoke.req(Class 1, ConfirmedPush) PUSHING
Server Push PUSHING
Event Conditions Action Next State
Abort TR-Abort.req(abort reason) the push transaction NULL
S-PushAbort.ind(abort reason)
TR-Invoke.cnf S-ConfirmedPush.cnf (A cknowledgement Headers = Exit NULL
Info)
Note: support for Acknowledgement Headers depends on
successful negotiation of the Acknowl edgement Headers
protocol feature
TR-Abort.ind Reason == DISCONNECT | Disconnect the session
Reason == SUSPEND Suspend the session
Other S-PushAbort.ind(abort reason) NULL

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000
Page 61(122)

7.2 Connectionless WSP

This section iswritten asif the session service provider is using the Transport SAP directly. However, this section also
appliesto the use of the Security SAP. Thereisaone-to-one mapping of connectionless transport primitives [WDP] to
Security primitives. For example, T-DUnitdata.request maps directly to SEC-UnitData.request. To alow for this
ambiguity, the layer prefixes (“ T-D* or “SEC-") have been omitted from the primitive names.

The connectionless WSP protocol does not require state machines. Each primitive of the connectionless WSP service
interface maps directly to sending aWSP PDU with the underlying Unitdata primitive as shown in the following table.

Event Condition Action

S-Unit-MethodInvoke.req Unitdata.req(Method)
Note: “ Method” means either the Get or Post PDU
using the PDU type assigned to the particular method.

S-Unit-MethodResult.req Unitdata.req(Reply)
S-Unit-Push.req Unitdata.req(Push)
T-DError.ind Ignore

Unitdata.ind Method PDU S-Unit-Methodlinvoke.ind

Note: “ Method” means either the Get
or Post PDU using the PDU type
assigned to the particular method.
Reply PDU S-Unit-MethodResult.ind
Push PDU S-Unit-MethodPush.ind

Protocol parameters, such as the Maximum Receive Unit and the persistent session headersin effect, are defined by
mutual agreement between the service users. No particular mechanism for thisis required, but the well-known port of the
server MAY be used to imply the parameter settings.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 62(122)

8 WSP Data Unit Structure and Encoding

This section describes the structure of the data units used to exchange WSP data units between client and server.

8.1 Data Formats

The following data types are used in the data format definitions.

8.1.1 Primitive Data Types

Table 11. Format Definition Data Types

Data Type Definition

bit 1 bit of data

octet 8 hits of opaque data

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

uintvar variable length unsigned integer (see below)

Network octet order for multi-octet integer valuesis “big-endian”. In other words, the most significant octet is
transmitted on the network first followed subsequently by the less significant octets.

The leftmost bit (bit number 0) of an octet or abit field isthe most significant. Bit fields described first are placed in the
most significant bits of an octet. The transmission order in the network is determined by the underlying transport
mechanism.

8.1.2 Variable Length Unsigned Integers

Many fieldsin the data unit formats are of variable length. Typically, therewill be an associated field that specifiesthe
size of the variable length field. In order to keep the data unit formats as small as possible, avariable length unsigned
integer encoding is used to specify lengths. The larger the unsigned integer, the larger the size of its encoding.

Each octet of the variable length unsigned integer is comprised of asingle Continue bit and 7 bits of payload as shown
in Figure 27.

7 bits

0| Payload

_ Continue bit
Figure 27. Variable Length Integer Octet
To encode alarge unsigned integer, split it into 7-bit fragments and place them in the payloads of multiple octets. The

most significant bits are placed in the first octets with the least significant bits ending up in the last octet. All octets
MUST set the Continue bit to 1 except the last octet, which MUST set the Continue bit to 0.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 63(122)

For example, the number 0x87A5 (1000 0111 1010 0101) is encoded in three octets as shown in Figure 28.

1| 0000010 ||1| 0001111 | |O| 0100101

Figure 28. Long Field Length

The unsigned integer MUST be encoded in the smallest encoding possible. In other words, the encoded value MUST
NOT start with an octet with the value 0x80.

In the data unit format descriptions, the data type uintvar will be used to indicate a variable length integer field. The

maximum size of auintvar is 32 bits. It will be encoded in no more than five octets. It MUST be present even if itsvalue
is zero.

8.2 Protocol Data Unit Structure

WSP generates WTP SDUs which contain asingle WSP protocol data unit. Each PDU serves a particular function in the
protocol and contains type-specific information.

8.2.1 PDU Common Fields

This section describes fields that are common across all or many PDUs.

i TID Type Type-Specific Contents
___________ Figure 29. PDU Structure

Every PDU starts with aconditional transaction identifier and atype identifier.

Table 12. PDU Header Fields
Name Type Source
TID uint8 S-Unit-Methodlnvoke.req:: Transaction Id or
S-Unit-MethodResult.req:: Transaction Id or
S-Unit-Push.req::Push I1d
Type uint8 PDU type

The TID field is used to associate requests with replies in the connectionless session service. The presence of the TID
isconditional. 1t MUST be included in the connectionless WSP PDUs, and MUST NOT be present in the connection-
mode PDUs. In connectionless WSP, the TID is passed to and from the session user asthe “ Transaction Id” or “Push
Id” parameters of the session primitives.

The Type field specifies the type and function of the PDU. The type numbers for the variousPDUs are defined in Table
34in Assigned Numbers. Therest of the PDU istype-specific information, referred to as the contents.

The following sections describe the format of the contents for each PDU type. In theinterest of brevity, the PDU header
has been omitted from the description of each PDU in the sections that follow.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 64(122)

8.2.2 Session Management Facility

8.2.2.1 Connect

The Connect PDU is sent to initiate the creation of a session.

Table 13. Connect Fields

Name Type Sour ce
Version uint8 WSP protocol version
CapabilitiesLen uintvar L ength of the Capabilitiesfied
HeadersLen uintvar Length of the Headersfidd
Capabilities CapabilitiesLen | S-Connect.reg::Requested Capabilities
octets
Headers HeadersLen S-Connect.reg::Client Headers
octets

The Version field identifies the version of the WSP protocol. Thisis used to determine the formats of thisand all
subsequent PDUs. The version number is encoded as follows: The major number of the version is stored in the high-
order 4 bits, and the minor number is stored in the low-order 4 bits. Thisversion number used for this specificationis
1.0, ie, 0x10.

The CapabilitiesLen field specifies the length of the Capabilitiesfield.

The HeadersLen field specifies the length of the Headersfield.

The Capabilities field contains encoded capability settings requested by the sender. Each capability has capability-
specific parameters associated with it. For more information on the encoding of thisfield, see section 8.3, “ Capability

Encoding”, below.

The Headersfield contains headers sent from client to server that apply to the entire session.

8.2.2.2 ConnectReply
The ConnectReply PDU is sent in response to the Connect PDU.

Table 14. ConnectReply Fields

Name Type Source
ServerSessionld Uintvar Session_|ID variable
CapabilitiesLen Uintvar Length of Capabilitiesfield
HeadersLen Uintvar L ength of the Headersfield
Capabilities CapabilitiesLen | S-Connect.res::Negotiated Capabilities
octets
Headers HeadersLen S-Connect.res::Server Headers
octets

The Server Sessionld contains the server session identifier. It isused to identify the session in subsequently sent PDUs
used for session management. In particular, the client uses this session identifier, if it wants to resume the session after
achangein the underlying transport.

The CapabilitiesLen field specifies the length of the Capabilities field.

The HeadersLen field specifies the length of the Headersfield.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 65(122)

The Capabilities field contains zero or more capabilities accepted by the sender. For more information on capabilities,
see section 8.3, “Capability Encoding”, below.

The Headersfield contains headers that apply to the entire session.

8.2.2.3 Redirect

The Redirect PDU may be returned in response to a Connect PDU, when the session establishment attempt is refused.
It can be used to migrate clients from servers whose addresses have changed or to perform a crude form of load
balancing at session creation time.

Table 15. Redirect Fields

Name Type Source

Flags uint8 S-Disconnect.reg::Redirect Security
and S-Disconnect.req::Reason Code

Redirect multiple octets | S-Disconnect.req::Redirect Addresses

Addresses

The Flagsfield indicates the nature of theredirect. Flagsthat are unassigned MUST be set to 0 by the server and
MUST beignored by the client. Theflags are defined as follows:

Flag bit Description
0x80 Permanent Redirect
0x40 Reuse Security Session

If the Permanent Redirect flag is set, the client SHOULD store the redirect addresses and use them to create and resume
all future sessions with the server. If the Permanent Redirect flag is not set, the client SHOULD not reuse the redirect
addresses to create and resume subsequent sessions beyond the current session being created. If the Reuse Security
Session flag is set, the client MAY use the current security session when requesting a session from the server it is being
redirected to.

The Redirect Addresses field contains one or more new addresses for the server. Subsequent Connect PDUs should be
sent to these addresses instead of the server address, which caused the Redirect PDU to be sent. The length of the
Redirect Addressesfield is determined by the SDU size as reported from the underlying transport. Each redirect address
is coded in the following format:

Table 16. AddressType

Name Type Purpose
Bearer Type 1 bit Flag indicating inclusion of Bearer Type field
Included
PortNumber 1 bit Flag indicating inclusion of PortNumber field
Included
AddressLen | 6hits L ength of the Addressfidd
BearerType uint8 Type of bearer network to use
PortNumber uint16 Port number to use
Address AddressLen Bearer address to use
octets

The Bearer Type Included and PortNumber Included fields indicate the inclusion of the Bearer Type and PortNumber
fields, respectively. The Bearer Type and PortNumber SHOULD be excluded, if the session establishment attempt is
redirected to the same type of bearer network and same destination port number as used for the initial Connect PDU.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 66(122)

The AddressLen field contains the length of the Address field.
The Bearer Type field indicates the type of bearer network to be used. The bearer type codes are defined in [WDP].

The PortNumber field contains the destination port number. When redirecting to a different destination port number
than the one used for the initial Connect PDU, the IANA dynamic and/or private ports (49152-65535) MUST be used.
The client MUST NOT change protocol layer configuration as aresult of aredirection (For example, aclient shall not
stop using the security layer asaresult of aredirection). The Permanent Redirect flag MUST not be set when
redirecting to adifferent destination port number than the one used for the initial Connect PDU.

The Addressfield contains the bearer address to use. The Bearer Type implies a so the bearer-dependent address format
used to encode thisfield. The encoding shall use the native address transmission format defined in the applicable
bearer specifications. If thisformat uses a number of bits, which is not amultiple of eight, the address shall be encoded
as a big-endian multi-octet integer; the necessary number of zero fill bits shall be included in the most significant octet
so that thefill bits occupy the most significant bits. The used bearer address formats are defined in [WDP] together with
the bearer type codes.

8.2.2.4 Disconnect

The Disconnect PDU is sent to terminate a session.

Table 17. Disconnect Fields
Name Type Source
ServerSessionld uintvar Session _|D variable

The Server Sessionld contains the session identifier of the session to be disconnected.

8.2.25 Reply

The Reply PDU is used by the session creation facility, and it is defined in section 8.2.3.3, “Reply”, below.

8.2.3 Method Invocation Facility

There are two PDUs used to invoke a method in the server, Get and Post, depending on the parameters required.

Methods defined in HTTP/1.1 [RFC2616] are assigned a specific PDU type number. PDU type numbers for methods not
defined in HTTP/1.1 are established during capability negotiation. These methods use either the Get or Post PDU
depending on whether the method includes request content or not. Methods using Get use PDU type numbersin the
range 0x40-0x5F. Methods using Post use numbersin the range 0x60-0x7F.

8231 Get

The Get PDU isused for the HTTP/1.1 GET, OPTIONS, HEAD, DELETE and TRACE methods, aswell as extension
methods that do not send request content to the server.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Table 18. Get Fields

Name Type Sour ce

URILen uintvar L ength of the URI fidd

URI URILen octets | S-Methodinvoke.req::Request URI or
S-Unit-MethodInvoke.req::Request URI

Headers multiple octets | S-Methodlnvoke.req::Request Headersor
S-Unit-Methodl nvoke.reg::Request Headers

The URILen field specifies the length of the URI field.

Page 67(122)

The URI field contains the URI. If the URI isanormally stored as a null-terminated string, the implementation MUST

NOT includethe null inthefield.

The Headersfield contains the headers associated with the request. The length of the Headersfield is determined by
the SDU size as provided to and reported from the underlying transport. The Headers field startsimmediately after the
URI field and ends at the end of the SDU.

8.2.32 Post
The Post PDU isused for the HTTP/1.1 POST and PUT methods, as well as extended methods that send request content
to the server.
Table 19. Post Fields
Name Type Source
UriLen uintvar L ength of the URI field
HeadersLen uintvar Length of the ContentType and Headersfields
combined
Uri UriLen octets S-MethodInvoke.req::Request URI or
S-Unit-Methodlnvoke.req::Request URI
ContentType | multiple octets S-Methodlnvoke.req::Request Headers or
S-Unit-Methodlnvoke.req::Request Headers
Headers (HeadersLen — length of S-Methodlnvoke.req::Request Headers or
ContentType) octets S-Unit-Methodlnvoke.req::Request Headers
Data multiple octets S-Methodlnvoke.req::Request Body or
S-Unit-MethodInvoke.req::Request Body

The UriLen field specifies the length of the Uri field.

The HeadersLen field specifies the length of the ContentType and Headers fields combined.

The Uri field contains the Uri. If the URI isanormally stored as a null-terminated string, the implementation MUST NOT

include the null in the field.

The ContentType field contains the content type of the data. 1t conformsto the Content-Type value encoding specified
in section 84.2.24, “ Content type field”, below.

The Headersfield contains the headers associated with the request.

The Data field contains the data associated with the request. The length of the Data field is determined by the SDU size
as provided to and reported from the underlying transport. The Data field startsimmediately after the Headersfield and

ends at the end of the SDU.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 68(122)

8.2.3.3 Reply

Reply is the generic response PDU used to return information from the server in response to arequest. Reply isused in
the S-Connect primitive to indicate an error during session creation.

Table 20. Reply Fields
Name Type Source
Status uint8 S-MethodResult.req:: Status or
S-Disconnect.req::Reason Codeor
S-Unit-MethodResult.reg:: Status

HeadersLen uintvar Length of the ContentType and Headersfields
combined
ContentType multiple octets S-MethodResult.req::Response Headers or

S-Disconnect.req::Error Headers or
S-Unit-MethodResult.req:: Response Headers
Headers (HeadersLen — length of S-MethodResult.req::Response Headers or
ContentType) octets S-Disconnect.req::Error Headers or
S-Unit-MethodResult.req::Response Headers
S-Resume.res.:Server Headers

Data multiple octets S-MethodResult.req::Response Body or
S-Disconnect.req::Error Body or
S-Unit-MethodResult.req::Response Body

The Statusfield contains aresult code of the attempt to understand and satisfy the request. The status codes have
been defined by HTTP/1.1 [RFC2616] and have been mapped into single-octet valueslisted in Table 36 in Assigned
Numbers.

The HeadersLen field specifies the length of the ContentType and Header s fields combined.

The ContentType field contains the content type of the data. 1t conformsto the Content-Type value encoding specified
in section 8.4.2.24, “ Content type field”, below.

The Headersfield contains the reply headersor the server headersin case of a Resume.

The Data field contains the data returned from the server. The length of the Data field is determined by the SDU size as
provided to and reported from the underlying transport. The Data field startsimmediately after the Headersfield and
ends at the end of the SDU.

8.2.3.4 Acknowledgement Headers

Acknowledgement Headers is not an actual PDU: it may be carried by the Exit Info parameter of the TR-Result primitive.
The service provider usesit to carry the data needed by the optional Acknowledgement Headers feature.

Table 21. Acknowledgement Headers Fields
Name Type Source
Headers multiple octets | S-MethodResult.res::Acknowledgement Headersor
S-ConfirmedPush.res::Acknowledgement Headers

The Headers field contains information encoded in the manner defined in Section 84, “Header Encoding”, below. The
size of thefield isimplied by the size of the transaction Exit Data.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 69(122)

8.2.4 Push and Confirmed Push Facilities

8.2.4.1 Push and ConfirmedPush

The Push and ConfirmedPush PDUs are used for sending unsolicited information from the server to theclient. The
formats of the two PDUs are the same, only the PDU typeisdifferent.

Table 22. Push and ConfirmedPush Fields

Name Type Sour ce

HeadersLen | uintvar Length of the ContentType and Headersfields
combined

ContentType | multiple octets S-Push.req::Push Headersor

S-ConfirmedPush.req::Push Headers or
S-Unit-Push.req::Push Headers

Headers (HeadersLen — length of S-Push.req::Push Headers or
ContentType) octets S-ConfirmedPush.req::Push Headers or
S-Unit-Push.req::Push Headers
Data multiple octets S-Push.req::Push Body or

S-ConfirmedPush.req::Push Body or
S-Unit-Push.reg::Push Body

The HeadersLen field specifies the length of the ContentType and Header s fields combined.

The ContentType field contains the content type of the data. It conformsto the Content-Type value encoding specified
in section 8.4.2.24, “ Content type field”, below.

The Headersfield contains the push headers.

The Data field contains the data pushed from the server. The length of the Data field is determined by the SDU size as
provided to and reported from the underlying transport. The Data field startsimmediately after the Headersfield and
ends at the end of the SDU.

8.2.4.2 Acknowledgement Headers

If the service provider implements the optional Acknowledgement Headers feature with the Confirmed Push facility,
Acknowledgement Header s are used to carry the associated data. It isdefined in Section 8.2.34 above.

8.2.5 Session Resume Facility

8.25.1 Suspend

The Suspend PDU is sent to suspend a session.

Table 23. Suspend Fields
Name Type Sour ce
Sessionld Uintvar Session_|D variable

The Sessionld field contains the session identifier of the session to be suspended.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 70(122)

8.25.2 Resume

The Resume PDU is sent to resume an existing session after a change in the underlying transport protocol.

Table 24. Resume Fields

Name Type Purpose
Sessionld uintvar Session_|D variable
CapabilitiesLen uintvar L ength of the Capabilities field
Capabilities CapabilitiesLe

n octets Reserved
Headers multiple octets S-Resume.req::Client Headers

The Sessionld field contains the session identifier returned from the server when the session was originally created.
The server looks up the session based on the session identifier. It then binds that session to the transaction service
instance identified by the peer address quadruplet of the transaction that carried the PDU.

The Capabilitiesfield isreserved for future use. In thisversion of the protocol it must not be used and the
CapabilitiesLen field must be zero.

The Headersfield contains headers sent from client to server that apply to the entire session.

8.25.3 Reply

The Reply PDU is used by the session resume facility, and it is defined in section 8.2.3.3, “Reply”, above

8.3 Capability Encoding

Capabilities allow the client and server to negotiate characteristics and extended behaviours of the protocol. A general
capability format is defined so capabilities that are not understood can be ignored.

A set of capability valuesis encoded as a sequence of capability structures described below. If the sender wantsto
provide the receiver with a set of alternative valuesfor a particular capability, one of which can be chosen, it sends
multiple instances of the capability, each with different parameters and with the most preferred alternative first. A
responder must not encode and send the val ue of a capability, unlessthe initiator is known to recogniseit, asindicated
by either the version number of the session protocol or by the initiator already having sent that capability during the
session.

When the initiator of capability negotiation encodes a capability defined in Section 8.3.2 " Capability Definitions’, below,
and the value is equal to the capability setting (default or negotiated) currently in effect, the capability structure MAY
be omitted. In this case the responder MUST interpret thisin the same way, asif it had received the explicitly encoded
value. When the responder encodes a capability defined in Section 8.3.2" Capability Definitions', and the valueis equal
to the capability setting proposed by the initiator, the capability structure MAY be omitted; the initiator MUST interpret
thisin the sasmeway, asif it had received the explicitly encoded value.

8.3.1 Capability Structure

The format of acapability isdescribed using atable similar to the ones used in PDU definitions:

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 71(122)

Table 25. Capability Fields

Name Type Purpose
Length uintvar Length of the Identifier and Parametersfields
combined
Identifier multiple octets Capability identifier
Parameters | (Length —length Capability-specific parameters
of Identifier)
octets

The Length field specifies the length of the Identifier and Parameters fields combined.

The Identifier field identifies the capability. The capability indentifier values defined in this protocol version are listed
in Table 37 in Assighed Numbers. It is encoded in the same way as the header field names, ie, using the Field-name
BNF rule specified in Section 8.4.2.6, “Header”, below.

The Parametersfield (if not empty) contains capability-specific parameters.

If acapability with an unknown Identifier field is received during capability negotiation, its value must be ignored. The
responder must also reply with the same capability with an empty Parametersfield, which indicates that the capability
was not recognised and did not have any effect. Asa consequence, the encodings for any provider-specific additional

capabilities MUST BE chosen so that an empty Parametersfield either isillegal (asfor capabilities with integer values)
or indicates that no extended functionality is enabled.

8.3.2 Capability Definitions

8.3.2.1 ServiceData Unit Size

There are two Service Data Unit (SDU) size capabilities, one for the client and one for the server:
Client-SDU-Size
Server-SDU-Size

These capabilities share the same parameter format.

Table 26. SDU Size Capability Fields
Name Type Purpose
MaxSize uintvar Maximum Size

The MaxSi ze field specifies the maximum SDU size that can be received or will be sent by the client or server, depending
on the context of the capability, as described below. A MaxSize of 0 (zero) meansthereisno limit to the SDU size.

When the client sends the Client-SDU-Size capability, it is indicating the maximum size SDU it can receive (ie, the client
MRU). When the server sends the Client-SDU-Size capahility, it isindicating the maximum SDU size it will send.

When the client sends the Server-SDU-Size capability, it isindicating the maximum size SDU it will send. When the
server sends the Server-SDU-Size capability, it isindicating the maximum SDU sizeit can receive (ie, the server MRU).

The default SDU sizes are specified in section 8.3.3, “ Capability Defaults”, below. The default Server SDU size SHOULD
be treated as an implementation minimum. Otherwise a method request sent during session establishment would risk
being aborted, since the server cannot indicate its true MRU until session has been established.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 72(122)

8.3.2.2 Protocol Options
The Protocol Options capability is used to enable extended, optional protocol functions.

Table 27. Protocol Options Capability Fields
Name Type Purpose
Flags multiple octets Option flags

When the client sends the Protocol Options capability to the server, the Flagsfield specifies the options the client will
accept. When the server sends the Protocol Options capability back to the client, the Flagsfield specifies the options
the server will perform. Although the Flagsfield may be multiple octets long, the currently defined flag bitsfitinto a
single octet, and an implementation SHOULD send only one octet. All undefined bits must be set to zero, and the
receiver MUST ignore them, including all additional trailing octets. As more flag bits are defined in the future, new
octets can then be appended to thefield.

A flag bit set to one (1) indicates that the associated optional function is enabled; aflag bit cleared to zero (0) indicates
that it isdisabled. Theflags are defined asfollows:

Flag bit Description

0x80 Confirmed Push Facility
0x40 Push Facility

0x20 Session Resume Facility
0x10 Acknowledgement Headers

When the client enables the Confirmed Push and/or Push facilities, it is advertising that it is able to and also wants to
accept data pushes. |If the client can receive data pushes, but the service provider in the server cannot send pushes, the
appropriate push flags MUST be cleared when replying with the negotiated capabilities. If the service user in the server
will not send any data pushes of a certain type, the appropriate pushflag SHOULD be cleared inthereply: thiswill
allow the client to free up any resources that would otherwise be dedicated to receiving data pushes.

When the client enables the Session Resume facility, it is advertising that it would like to suspend and resume the
session. |If the server isnot able or willing to support the Session Resume facility, it MUST clear the Session Resume
facility flags when replying with the negotiated capabilities.

When the client setsthe Acknowledgement Headersflag, it is advertising whether or not it would like to send
Acknowledgement headers. The server indicates with the Acknowledgement Headers flag in the reply, whether or not it
isableto process Acknowledgement Headers. |If the server isnot able to process the headers, the client SHOULD not
send them; if the client still sends them, the headers shall be ignored.

8.3.2.3 Maximum Outstanding Requests (MOR)

There are two MOR capabilities, one for methods and one for pushes:

Method-MOR
Push-MOR

The Method-MOR and Push-MOR capabilities respectively indicate the number of outstanding method or push
transactions that may occur simultaneously.

Table 28. Maximum Outstanding Requests Capability Fields
Name Type Purpose
MOR uint8 Maximum Outstanding Requests

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 73(122)

When the client is able to submit multiple outstanding method requests, it indicates the maximum number of
simultaneous requestsit will ever send in the Method-M OR capability. The server replieswith the lesser of the client’s
M ethod-M OR and the number of method transactions the server can simultaneously process.

Similarly, when the client is able to process multiple outstanding push requests, it indicates the maximum number of
simultaneous requests it can process in the Push-MOR capability. The server replies with the lesser of theclient’s
Push-MOR and the maximum number of simultaneous push transactions the server will ever send.

8.3.2.4 Extended Methods

The Extended Methods capability declares the set of extended methods to be used during the session and assigns PDU
typesto them.

Table 29. Extended Methods Capability Field Entries

Name Type Purpose
PDU Type uint8 PDU Type for method
Method Name multiple octets Null terminated method nhame

When sent from client to server in the Connect PDU, the capability-specific parameters for the Extended Methods
capability contain zero or more PDU Type to Method Name assignments. The end of the list of assignmentsis
determined from the end of the capability as specified in the capability length. Each capability assignment contains a
PDU Type and a Method Name. The PDU types are assigned by the client from the range 0x50-0x5F for methods that
use the Get PDU format and the range 0x70-0x7F for methods that use the Post PDU format. The method nameisanull
terminated string.

When sent from server to client in the ConnectReply PDU, the capability-specific parameters for the Extended Methods
capability contain the zero or more PDU type codes (without the method names) that the server accepts and can receive.

8.3.25 Header Code Pages

The Header Code Pages capability declares the set of header code pages to be used during the session and assigns
page codes to them.

Table 30. Header Code Pages Capability Field Entries

Name Type Purpose
Page Code uint8 Code for header page
Page Name multiple octets Name of header page

When sent from client to server in the Connect PDU, the capability-specific parameters for the Header Code Pages
capability contain zero or more header page name to code assignments. The end of the list of assignmentsis determined
from the end of the capability as specified in the capability length. Each capability assignment contains a Page Code
and a Page Name. The Page Name isanull terminated string.

When sent from server to client in the ConnectReply PDU, the capability-specific parameters for the Header Code Pages
capability contain the zero or more Page Codes (without the Page Names), that the server can and will use.

When the client sends this capability, it isindicating its desire to use the named header code pages. The response from
the server indicates, which of these pages actually shall be used during the remainder of the session. Once the use of an
extension header code page has been negotiated, the headers belonging to it MUST be sent encoded using the binary
syntax defined by the code page. If the server declines to use a particular header code page, the (application-specific)
headers MUST be sent in textual format, unless some other code page defines an encoding syntax for them.

If the server agrees to use a header code page, the Page Code selected by the client shall be used during the remainder
of the session, when the header code page needs to be identified in a code page shift sequence.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 74(122)

8.3.2.6 Aliases
The Aliases capability declares alist of alternate addresses for the sender.

Table 31. Aliases Capability Fields
Name Type Purpose
Addresses multiple octets Alternate addresses

The Addresses field is encoded in the same format as the Redirect Addresses field in the Redirect PDU, described in
Section 8.2.2.3. The addresses sent by a server may be used to facilitate a switch to an alternate bearer network, when a
session isresumed. The addresses sent by a client may be used to facilitate the use of the connectionless session
service.

8.3.3 Capability Defaults

Unless otherwise specified for a specific bearer or well-known application port, the capability defaults are as follows:

Name Setting
Aliases None
Client SDU Size 1400 octets
Extended Methods None
Header Code Pages None
Protocol Options Oox00
Maximum Outstanding Method Requests 1

M aximum Outstanding Push Requests 1

Server SDU Size 1400 octets

8.4 Header Encoding

8.4.1 General

In this section, both sender and recipient refer to the peer entities (client or server), terminating the WSP protocol. Each
peer entity is always associated with an encoding version. The encoding version indicates which encodings that are
recognized by a peer. However even though an encoding is recognized, it does not imply that the peer supports the
functionality associated with the encoding. For example, a server can recognize a Profile header and thereby indicate
support for encoding version 1.2. However, the server might not have support for User Agent Profile. The supported
encoding version is exposed to the other peer entity during the first transaction or by means of Client Provisioning
[PROVCONT]. In addition al new headers defined by WAP Forum MUST have well defined rules for encoding headers
in text format aswell in binary format. For end-to-end headers the encoding defined for HTTP MUST be applied asthe
textual encoding.

WSP header fields are included in WSP PDUs or in multi-part data objects. The header fields contain general
information, request information, response information, or entity information. Each header field consists of afield name
followed by afield value.

Field Name Field Value

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 75(122)

Figure 30. Header field comprised of field name and field value
WSP defines a compact format for encoding header fields that is compatible with HTTP/1.1 header fields.
The following procedures are used to reduce the size of the headers:

Well-known tokens are mapped to binary values.
Date values, integer values, quality factors and delta second values are coded in binary format.
Redundant information is removed.

The encoding utilises the fact that the first octet of the text stringsin HTTP headersistypically in the range 32-126,
except for some rare cases when atext string isinitiated with an 8-bit character value (eg, national characters). Range O-
31 and 127-255 can be used for binary values, quote characters or length indicators of binary data. This makesit
possible to mix binary dataand text strings efficiently, which is an advantage when the generic partsof HTTP/1.1
headers shall be encoded.

8.4.1.1 Fiddname

Field names with assigned integer encoding values MUST be encoded using the integer value if encoding version
associated with the field nameisless or equal to 1.2 or if the recipient supports the encoding version associated with
field name. If the encoding version is higher than the encoding version supported by the recipient or if the client
encoding version is unknown by the server, the field name MUST be sent in text format. If the encoding version of the
server isunknown by the client, the field name MAY be sent in text format or in binary format. Unrecognized encodings
MUST be handled as defined in section 8.4.2.70. The representation of the integer encodings is made more compact by
dividing them into header code pages. Each header code page encodes up to 128 identities of well-known field names,
so that the integer encoding value is represented using asingle octet. The most common well-known header names are
defined in the default header code page, but additional encoding values can be made available by shifting between code

pages.

The header code pages used during a session are identified with numeric codes. Header code page 1 isthe default page
and is always active at the beginning of a set of headers. A shift to a new code page is accomplished by sending a shift
sequence between two header fields. The new header code page remains active until the end of the set of headers being
decoded. This procedure appliesto the header fieldsin each WSP PDUs, as well asto the header fields of each entity
embedded in amultipart entity.

The default header code pages defines all HTTP/1.1 field names and header fields specified by the WAP Forum The
numbers for header code pages are assigned in the following way:

1, default header code page, including HTTP/1.1 headers and headers specified by the WAP Forum
2-15, reserved for header code pages specified by the WAP Forum

16-127, reserved for application specific code pages

128-255, reserved for future use

An application-specific header code page isidentified by atextual name (string). However, when capability negotiation
is used to agree on the set of extension header code pages (see Section 8.3.2.5), which shall be used during the session,
each application-specific code page is also assigned a numeric identity from the range reserved for them. Thisidentity
remainsin effect to the end of the session and MUST be used to identify the page in a shift sequence.

If capability negotiation leads to an agreement on the use of a header code page, then the application-specific field
names MUST be sent using the well-known single-octet values defined by the page. If there is no agreement on the use
of aheader code page, the application-specific field names MUST be encoded using the Token-text rule from Section
8.4.2.1 below.

For example, a sequence of well-known headers and application specific header can be structured as follows:

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 76(122)

<WSP header 1>

<WSP header n>
<Shift to application specific code page>
<Application specific header 1>

<Application specific header np

84.1.2 Fidd values

The syntax of encoded field valuesis defined by the field name. Well-known field values MUST be encoded using the
compact binary formats defined by the header syntax below. If the field name is encoded in text format, textual values
MUST be used.. The WSP field values are encoded so that the length of the field value can always be determined, even
if the detailed format of a specific field valueis not known. This makesit possible to skip over individual header fields
without interpreting their content. The header syntax in Section 8.4.2 below is defined so, that the first octet in all the
field values can be interpreted as follows:

Value | Interpretation of First Octet
0-30 Thisoctet isfollowed by the indicated number (0 —30) of data octets
31 This octet isfollowed by a uintvar, which indicates the number of data octets after it
32-127 | Thevaueisatext string, terminated by azero octet (NUL character)
128- 255 | Itisan encoded 7-bit value; this header has no more data

It is up to the application to define how application-specific field values shall be encoded, but the encodings MUST
adhere to the general format described in the table above.

If thereisamutual agreement between server and client on the used extension header code pages, then thereisalso a
mutual agreement on, how application-specific field values defined by these code pages shall be encoded. In this case
the applicable field values MUST be encoded according to the syntax rules defined by these code pages.

If the client and server cannot agree on the use of a header code page during capability negotiation, application-specific
field values MUST be encoded using the Application-specific-value rule from Section 8.4.2.6.

8.4.1.3 Encoding of list values

If the syntax defined by RFC2616 for a header field with awell-known field name permits a comma-separated list using
1#rule, the header MUST be converted into a sequence of headers. Each shall have the original field name and contain
one of thevaluesin theoriginal list. The order of the headers shall be the same as the order of their valuesin the
original list value. The encoding rule for the well-known header shall be applied only after this transformation.

8.4.2 Header syntax

This section defines the syntax and semantics of all HTTP/1.1 header fieldsin WSP. The mechanisms specified in this
document are described in augmented BNF similar to that used by [RFC2616].

The notation <Octet N> is used to represent a single octet with the value N in the decimal system. The notation
<Any octet M-N> isused for asingle octet with the value in the range from M to N, inclusive.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 77(122)

8.4.2.1 Bascrules

The following rules are used through this specification to describe the basic parsing constructs. The rulesfor Token,
TEXT and OCTET have the same definition as per [RFC2616].

Text-string = [Quote] *TEXT End-of-string
; If the first character in the TEXT is in the range of 128-255, a Quote character must precede it.
; Otherwise the Quote character must be omitted. The Quote is not part of the contents.

Token-text = Token End-of-string

Quoted-string = <Octet 34> *TEXT End-of-string
;The TEXT encodes an RFC2616 Quoted-string with the enclosing quotation-marks <"> removed

Extension-media = *TEXT End-of-string
; This encoding is used for media values, which have no well-known binary encoding

Short-integer = OCTET
; Integers in range 0-127 shall be encoded as a one octet value with the most significant bit set
; to one (Ixxx xxxx) and with the value in the remaining least significant bits.

Long-integer = Short-length Multi-octet-integer
; The Short-length indicates the length of the Multi-octet-integer

Multi-octet-integer = 1*30 OCTET

; The content octets shall be an unsigned integer value

; with the most significant octet encoded first (big-endian representation).
; The minimum number of octets must be used to encode the value.

Uintvar-integer = 1*5 OCTET
; The encoding is the same as the one defined for uintvar in Section 8.1.2.

Constrained-encoding = Extension-Media | Short-integer
; This encoding is used for token values, which have no well-known binary encoding, or when
; the assigned number of the well-known encoding is small enough to fit into Short-integer.

Quote = <Octet 127>
End-of-string = <Octet 0>

8.4.2.2 Length

Thefollowing rules are used to encode length indicators.

Value-length = Short-length | (Length-quote Length)
; Value length is used to indicate the length of the value to follow

Short-length = <Any octet 0-30>
Length-quote = <Octet 31>
Length = Uintvar-integer

8.4.2.3 Parameter Values
The following rules are used in encoding parameter values.
No-value = <Octet 0>

; Used to indicate that the parameter actually has no value,
; g, as the parameter "bar" in ";foo=xxx; bar; baz=xyzzy".

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 78(122)

Text-value = No-value | Token-text | Quoted-string
Integer-Value = Short-integer | Long-integer

Date-value = Long-integer
; The encoding of dates shall be done in number of seconds from
; 1970-01-01, 00:00:00 GMT.

Delta-seconds-value = Integer-value

Q-value =1*2 OCTET

; The encoding is the same as in Uintvar-integer, but with restricted size. When quality factor 0

; and quality factors with one or two decimal digits are encoded, they shall be multiplied by 100

; and incremented by one, so that they encode as a one-octet value in range 1-100,

;ie, 0.1 is encoded as 11 (0x0B) and 0.99 encoded as 100 (0x64). Three decimal quality

; factors shall be multiplied with 1000 and incremented by 100, and the result shall be encoded
; as a one-octet or two-octet uintvar, eg, 0.333 shall be encoded as 0x83 0x31.

; Quality factor 1 is the default value and shall never be sent.

Version-value = Short-integer | Text-string

; The three most significant bits of the Short-integer value are interpreted to encode a major
; version number in the range 1-7, and the four least significant bits contain a minor version
; number in the range 0-14. If there is only a major version number, this is encoded by

; placing the value 15 in the four least significant bits. If the version to be encoded fits these
; constraints, a Short-integer must be used, otherwise a Text-string shall be used.

Uri-value = Text-string
; URI value should be encoded per [RFC2616], but service user may use a different format.

8.4.2.4 Parameter

Thefollowing rules are used to encode parameters.

Parameter = Typed-parameter | Untyped-parameter
Typed-parameter = Well-known-parameter-token Typed-value
; the actual expected type of the value is implied by the well-known parameter

Well-known-parameter-token = Integer-value
; the code values used for parameters are specified in the Assigned Numbers appendix

Typed-value = Compact-value | Text-value
; In addition to the expected type, there may be no value.
; If the value cannot be encoded using the expected type, it shall be encoded as text.

Compact-value = Integer-value |

Date-value | Delta-seconds-value | Q-value | Version-value |
Uri-value

Untyped-parameter = Token-text Untyped-value
; the type of the value is unknown, but it shall be encoded as an integer, if that is possible.

Untyped-value = Integer-value | Text-value
8.4.25 Authorization
The following common rules are used for authentication and authorisation.

Credentials = (Basic Basic-cookie) | (Authentication-scheme *Auth-param)
Basic = <Octet 128>

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 79(122)

Basic-cookie = User-id Password
User-id = Text-string

Password = Text-string
; Note user identity and password shall not be base 64 encoded.

Authentication-scheme = Token-text
Auth-param = Parameter
Challenge = (Basic Realm-value) | (Authentication-scheme Realm-value *Auth-param)

Realm-value = Text-string
; shall be encoded without the quote characters <"> in the corresponding RFC2616 Quoted-string

8.4.2.6 Header

Thefollowing rules are used to encode headers.

Header = Message-header | Shift-sequence
Shift-sequence = (Shift-delimiter Page-identity) | Short-cut-shift-delimiter

Shift-delimiter = <Octet 127>
Page-identity = <Any octet 1-255>
Short-cut-shift-delimiter = <Any octet 1-31>

Message-header = Well-known-header | Application-header
Well-known-header = Well-known-field-name Wap-value
Application-header = Token-text Application-specific-value

Field-name = Token-text | Well-known-field-name
Well-known-field-name = Short-integer
Application-specific-value = Text-string

Wap-value =
Accept-value |
Accept-charset-value |
Accept-encoding-value |
Accept-language-value |
Accept-ranges-value |
Age-value |
Allow-value |
Authorization-value |
Cache-control-value |
Connection-value |
Content-base-value |
Content-encoding-value |
Content-language-value |
Content-length-value |
Content-location-value |
Content-MD5-value |
Content-range-value |
Content-type-value |
Date |
Etag-value |
Expires-value |
From-value |
Host-value |
If-modified-since-value |

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 80(122)

If-match-value |
If-none-match-value |
If-range-value |
If-unmodified-since-value |
Location-value |
Last-modified |
Max-forwards-value |
Pragma-value |
Proxy-authenticate-value |
Proxy-authorization-value |
Public-value |
Range-value |
Referer-value |
Retry-after-value |
Server-value |
Transfer-encoding-value |
Upgrade-value |
User-agent-value |
Vary-value |

Via-value |

Warning |
WWW-authenticate-value |
Content-disposition-value |
Application-id-value |
Content-uri-value |
Initiator-uri-value |
Accept-application-value |
Bearer-indication-value |
Push-flag-value |
Profile-value |
Profile-diff-value |
Profile-warning-value |
Expect-value |

TE-value |

Trailer-value |
X-Wap-Tod-value |
Content-ID-value |
Set-Cookie-value |
Cookie-value |
Encoding-Version-value;

8.4.2.7 Accept fied
The following rules are used to encode accept values.

Accept-value = Constrained-media | Accept-general-form
Accept-general-form = Value-length Media-range [Accept-parameters]
Media-range = (Well-known-media | Extension-Media) *(Parameter)
Accept-parameters = Q-token Q-value *(Accept-extension)
Accept-extension = Parameter

Constrained-media = Constrained-encoding
Well-known-media = Integer-value
; Both are encoded using values from Content Type Assignments table in Assigned Numbers

Q-token = <Octet 128>

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 81(122)

8.4.2.8 Accept charset field
Thefollowing rules are used to encode accept character set values.

Accept-charset-value = Constrained-charset | Accept-charset-general-form
Accept-charset-general-form = Value-length (Well-known-charset | Token-text) [Q-value]

Constrained-charset = Any-charset | Constrained-encoding
Well-known-charset = Any-charset | Integer-value
; Both are encoded using values from Character Set Assignments table in Assigned Numbers

Any-charset = <Octet 128>
; Equivalent to the special RFC2616 charset value “*”

8.4.2.9 Accept encoding field
Thefollowing rules are used to encode accept encoding val ues.

Accept-encoding-value = Content-encoding-value | Accept-encoding-general-form
Accept-encoding-general-form = Value-length (Content-encoding-value | Any-encoding) [Q-value]

Any-encoding = <Octet 131>
; Equivalent to the special RFC2616 encoding value “*”

8.4.2.10 Accept language field
Thefollowing rules are used to encode accept language val ues.

Accept-language-value = Constrained-language | Accept-language-general-form
Accept-language-general-form = Value-length (Well-known-language | Text-string) [Q-value]

Constrained-language = Any-language | Constrained-encoding
Well-known-language = Any-language | Integer-value
; Both are encoded using values from Character Set Assignments table in Assigned Numbers

Any-language = <Octet 128>
; Equivalent to the special RFC2616 language range "*"

8.4.2.11 Accept rangesfield

Thefollowing rules are used to encode accept range val ues.

Accept-ranges-value = (None | Bytes | Token-text)

None = <Octet 128>
Bytes = <Octet 129>

8.4.2.12 Agefidd

Thefollowing rule is used to encode age values.

Age-value = Delta-seconds-value

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

8.4.2.13 Allow fidd
The following rules are used to encode allow values.

Allow-value = Well-known-method

Well-known-method = Short-integer

Page 82(122)

; Any well-known method or extended method in the range of 0x40-0x7F

8.4.2.14 Authorization fied

Thefollowing rule is used to encode authorisation values.

Authorization-value = Value-length Credentials

8.4.2.15 Cache-control field

Thefollowing rules are used to encode cache control val ues.

Cache-control-value = No-cache |
No-store |
Max-stale |
Only-if-cached |
Private |
Public |
No-transform |
Must-revalidate |
Proxy-revalidate |
Cache-extension |
Value-length Cache-directive

Cache-directive = No-cache 1*(Field-name) |
Max-age Delta-second-value |
Max-stale Delta-second-value |
Min-fresh Delta-second-value |
Private 1*(Field-name) |
Cache-extension Parameter

No-cache = <Octet 128>
No-store = <Octet 129>
Max-age = <Octet 130>
Max-stale = <Octet 131>
Min-fresh = <Octet 132>
Only-if-cached = <Octet 133>
Public = <Octet 134>

Private = <Octet 135>
No-transform = <Octet 136>
Must-revalidate = <Octet 137>
Proxy-revalidate = <Octet 138>
S-maxage = <Octet 139>
Cache-extension = Token-text

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000
Page 83(122)

8.4.2.16 Connection field

The following rules are used to encode connection val ues.

Connection-value = (Close | Token-text)
Close = <Octet 128>

8.4.2.17 Content-basefield

Thefollowing ruleis used to encode content base values.
Content-base-value = Uri-value

8.4.2.18 Content encoding field

Thefollowing rules are used to encode content encoding values.

Content-encoding-value = (Gzip | Compress | Deflate | Token-text)

Gzip = <Octet 128>
Compress = <Octet 129>
Deflate = <Octet 130>

8.4.2.19 Content languagefield
Thefollowing ruleis used to encode content language val ues.
Content-language-value = (Well-known-language | Token-text)
8.4.2.20 Content length field
Thefollowing rule is used to encode content length values. Normally the information in the content length header is
redundant and MAY not be sent -- the content length is available in the PDU or can be cal culated when the transport

layer providesthe PDU size.

If the PDU contains no entity body at all (response to HEAD), then the Content-Length SHOULD be encoded in the
header fields, so that the client canlearn the size of the entity.

Content-length-value = Integer-value

8.4.2.21 Content location field

Thefollowing rule is used to encode content location values.
Content-location-value = Uri-value

8.4.2.22 Content MD5 field

The following rules are used to encode content MD5 values.
Content-MD5-value = Value-length Digest

; 128-bit MD5 digest as per [RFC1864]. Note the digest shall not be base-64 encoded.
Digest = 16*16 OCTET

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

8.4.2.23 Content rangefield

Page 84(122)

Thefollowing rules are used to encode content range val ues. L ast-byte-pos availablein the HTTP/1.1 header is
redundant. The content range length is available in the PDU or can be cal culated when the transport layer provides the
PDU size. Last-bytepos can be calculated by adding together First-byte-pos with size of content range.

Content-range = Value-length First-byte-pos Entity-length

First-byte-pos = Uintvar-integer
Entity-length = Unknown-length | Uintvar-integer
Unknown-length = <Octet 128>

; Equivalent to the special RFC 2616 Content-Range entity-length “*”

8.4.2.24 Content typefield

The following rules are used to encode content type values. The short form of the Content-type-value MUST only be
used when the well-known mediaisin the range of 0-127 or atext string. In all other cases the general form MUST be

used.

Content-type-value = Constrained-media | Content-general-form

Content-general-form = Value-length Media-type

Media-type = (Well-known-media | Extension-Media) *(Parameter)

Note that the value of the content type field must be placed in the PDU Content-Type field and therefore the header
itself shall not be transmitted. Similarly on reception, the value in the PDU Content Type field must be passed to the

application as a Content-Type header.

8.4.2.25 Datefield
Thefollowing rule is used to encode date val ues.
Date = Date-value
8.4.2.26 Etagfied
Thefollowing rule is used to encode entity tag values.

Etag-value = Text-string
; The value shall be encoded as per [RFC2616]

8.4.2.27 Expiresfield

Thefollowing ruleis used to encode expires values.

Expires-value = Date-value

8.4.2.28 From fidd

Thefollowing rule is used to encode from values.

From-value = Text-string

; The value shall be encoded as an e-mail address as per [RFC822]

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

8.4.2.29 Ho«t field
Thefollowing rule is used to encode host val ues.

Host-value = Text-string
; The value shall be encoded as per [RFC2616]

8.4.2.30 If modified since field

Thefollowing rule is used to encode if modified since values.
If-modified-since-value = Date-value

8.4.2.31 If match fidd

Thefollowing ruleis used to encode if match values.

If-match-value = Text-string
; The value shall be encoded as per [RFC2616]

8.4.2.32 If none match fidd

Thefollowing ruleis used to encode if none match values.

If-none-match-value = Text-string
; The value shall be encoded as per [RFC2616]

8.4.2.33 If rangefield

Thefollowing ruleis used to encodeif range val ues.

If-range = Text-string | Date-value
; The value shall be encoded as per [RFC2616]

8.4.2.34 If unmodified sincefied

Thefollowing rule is used to encode if unmodified since values.

If-unmodified-since-value = Date-value

8.4.2.35 Last modified field
Thefollowing ruleis used to encode last modified values.

Last-modified-value = Date-value

8.4.2.36 Location field
Thefollowing ruleis used to encode |ocation values.

Location-value = Uri-value

8.4.2.37 Max forwardsfied

Thefollowing ruleis used to encode max forwards values.

Max-forwards-value = Integer-value

Page 85(122)

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

8.4.2.38 Pragma fidd
The following ruleis used to encode pragma values.

Pragma-value = No-cache | (Value-length Parameter)
; The quoted text string shall be encoded as per [RFC2616]

8.4.2.39 Proxy-authenticate

Thefollowing rules are used to encode proxy authenticate values.

Proxy-authenticate-value = Value-length Challenge

8.4.2.40 Proxy authorization field

The following rules are used to encode proxy authorization values.

Proxy-authorization-value = Value-length Credentials

8.4.2.41 Publicfield

Thefollowing ruleis used to encode public values.

Public-value = (Well-known-method | Token-text)

8.4.2.42 Rangefield

The following rules are used to encode range values.

Range-value = Value-Length (Byte-range-spec | Suffix-byte-range-spec)
Byte-range-spec = Byte-range First-byte-pos [Last-byte-Pos]
Suffix-byte-range-spec = Suffix-byte-range Suffix-length

First-byte-pos = Uintvar-integer

Last-byte-pos = Uintvar-integer

Suffix-length = Uintvar-integer

Byte-range = <Octet 128>
Suffix-byte-range = <Octet 129>

8.4.2.43 Referer field
Thefollowing rule is used to encode referrer values.

Referer-value = Uri-value

8.4.2.44 Retry after field

Thefollowing rules are used to encode retry after values.

Retry-after-value = Value-length (Retry-date-value | Retry-delta-seconds)
Retry-date-value = Absolute-time Date-value
Retry-delta-seconds = Relative-time Delta-seconds-value

Absolute-time = <Octet 128>
Relative-time = <Octet 129>

Page 86(122)

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

8.4.2.45 Server fided

Thefollowing ruleis used to encode server values.

Server-value = Text-string
; The value shall be encoded as per [RFC2616]

8.4.2.46 Transfer encoding field

Thefollowing rules are used to encode transfer-encoding values.

Transfer-encoding-values = Chunked | Token-text
Chunked = <Octet 128>

8.4.2.47 Upgradefied
Thefollowing ruleis used to encode upgrade values.

Upgrade-value = Text-string
; The value shall be encoded as per [RFC2616]

8.4.2.48 User agent field
Thefollowing ruleis used to encode user agent values.

User-agent-value = Text-string
; The value shall be encoded as per [RFC2616]

8.4.2.49 Vary fied

Thefollowing ruleis used to encode vary values.
Vary-value = Field-name

8.4.2.50 Viafied

Thefollowing ruleisused to encode via values.

Via-value = Text-string
; The value shall be encoded as per [RFC2616]

8.4.2.51 Warningfidd

The following rules are used to encode warning values. The warning code values are defined in [RFC2616].

Warning = Warn-code | Warning-value

Warning-value = Value-length Warn-code Warn-agent Warn-text

Warn-code = Short-integer

Warn-agent = Text-string
; The value shall be encoded as per [RFC2616]

Warn-text = Text-string

8.4.2.52 WWW-authenticate field

Thefollowing ruleis used to encode WWW authenticate val ues.

Page 87(122)

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000
Page 88(122)

WWW-authenticate-value = Value-length Challenge

8.4.2.53 Content-disposition field
The following ruleis used to encode the Content-disposition fields used when submitting form data.

Content-disposition-value = Value-length Disposition *(Parameter)
Disposition = Form-data | Attachment

Form-data = <Octet 128>
Attachment = <Octet 129>

8.4.2.54 X-Wap-Application-Id fied
Thefollowing ruleis used to encode the X-Wap-Application-Id field.

Application-id-value = Uri-value | App-assigned-code
App-assigned-code = Integer-value

8.4.2.55 X-Wap-Content-URI field
Thefollowing ruleis used to encode the X-Wap-Content-URI field.

Content-uri-value = Uri-value

8.4.2.56 X-Wap-Initiator-URI field

Thefollowing rule is used to encode the X-Wap-Initiator-URI field.

Initiator-uri-value = Uri-value

8.4.2.57 Accept-application field
Thefollowing ruleis used to encode the Accept-application field.

Accept-application-value = Any-application | Application-id-value
; lists of Application Id values encoded using multiple Accept-application headers

Any-application = <Octet 128> ; encoding for "*"

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 89(122)

8.4.2.58 Bearer-indication field
Thefollowing ruleis used to encode the Bearer-indication field.

Bearer-indication-value = Integer-value
8.4.2.59 Push-flag field

Thefollowing ruleis used to encode the Push-Flag field.

Push-flag-value = Short-integer

8.4.2.60 Profilefield
Thefollowing ruleis used to encode Profile values (user profile information as defined in [UAPROF]):

Profile-value = Uri-value

8.4.2.61 Profile-Diff field
Thefollowing ruleis used to encode Profile-Diff values (profile difference information as defined in [UAPROF]):

Profile-diff-value = value-length CCPP-profile
CCPP-profile =*OCTET ; encoded in WBXML form — see [WBXML]

8.4.2.62 ProfileWarning field

The following rule is used to encode Profile-Warning values (responses from gateways or origin servers as defined in
[UAPROF]):

Profile-warning-value = Warn-code | (Value-length Warn-code Warn-target *Warn-date)
Warn-code = Short-integer
; assigned value Warning code (see [CCPPEX])

;0x10 100
:0x11 101
:0x12 102
:0x20 200
:0x21 201
:0x22 202
;0x23 203

Warn-target = Uri-value
Warn-date = Date-value

8.4.2.63 Expect fidd

Thefollowing rule is used to encode Expect values:

Expect-value= 100-continue | Expect-expression
Expect-expression = Expression-var Expression-Value
Expression-var = Token-text

Expression-value = (Token-text | Quoted-string) *Expect-params

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Expect-params = Token-text Expect-param-value
Expect-param-value = Token-text | Quoted-string
100-continue = <Octet 128>

8.4.2.64 TE fidd

Thefollowing ruleis used to encode TE values:

TE-value = Trailers | TE-General-Form

TE-General-Form = Value-length (Well-known-TE | Token-text) [Q-Parameter]
Q-Parameter = Q-token Q-value

Well-known-TE = (Chunked | Identity | Gzip | Compress | Deflate)

Q-token = <Octet 128>
Trailers = <Octet 129>
Chunked = <Octet 130>
Identity = <Octet 131>
Gzip = <Octet 132>
Compress = <Octet 133>
Deflate = <Octet 134>

8.4.2.65 Trailer field

Thefollowing ruleis used to encode Trailer values:

Trailer-value = (Well-known-header-field | Token-text)

Well-known-header-field = Integer-value
; Encoded using values from Header Field Name Assignments table in Assigned Numbers

8.4.2.66 X-Wap-Tod fidd
Thefollowing ruleis used to encode the X-Wap-Tod field:

X-Wap-Tod-value = Date-value

8.4.2.67 Content-1D field
Thefollowing ruleis used to encode the Content-1D field. This header field is specified in RFC 2045.

Content-ID-value = Quoted-string

8.4.2.68 Set-Cookiefield

Thefollowing rules are used to encode set cookie val ues:

Set-Cookie-value = Value-length Cookie-version Cookie-name Cookie-val *Parameter
Cookie-version = Version-value

Cookie-name = Text-string

Cookie-val = Text-string

Page 90(122)

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000
Page 91(122)

8.4.2.69 Cookiefield
The following rules are used to encode cookie values:

Cookie-value = Value-length Cookie-version *Cookie

Cookie = Cookie-length Cookie-name Cookie-val [Cookie-parameters]
Cookie-length = Uintvar-integer

Cookie-parameters = Path [Domain]

Path = Text-string

; if path is an empty string, it indicates that there is no path value present
Domain = Text-string

8.4.2.70 Encoding-Verson fied

The following rule should be used to encode the maximum supported binary encoding version value. The binary
encoding version appliesfor any content types, parameter types and headerslisted in its assigned number table or any
headers defined for a dedicated extended header code page.

Encoding-version-value = Version-value | Value-length Code-page [Version-value]
;encoded using values from tables in the Assigned Numbers Appendix or from an
;extended header code page.

Code-page = Short-integer

;ldentity of the extended header code page which the encoding applies for. If the
;Code-page is omitted, the version value refers to the header code pages reserved for
;headers specified by WAP Forum

The Encoding-version header is ahop-by-hop header that MUST beincluded in all request and reply. In connection
oriented case it can be sent as static header so it doesn't have to be sent over the air all thetime.

If aclient does not include the Encoding-version header to its request then the server MUST assume that client only
supports encoding defined in version 1.2 or lower. Similarly, if a server does not include the Encoding-version header to
itsresponse it indicates for the client that the server is only capable of handling binary encodings with version 1.2 or
lower.

If extended header code pages are used, there SHOULD be a dedicated encoding version header for each extended
header code page. In the absence of the encoding version header, the lowest possible version MUST be assumed for
the extended header code page.

The usage of Encoding-version header is similar to HTTP version as defined in [RFC2145]. A WSP client MUST send
the highest encoding version for which it is compliant, and whose version is no higher than the highest version
supported by the server, if thisisknown. A WSP client MUST NOT send aversion for which it is not compliant.

A WSP server MUST send aresponse version egual to the highest versions for which the server is compliant, and
whose version isless than or equal to the onereceived in the request. A WSP server MUST NOT send a version for
which it is not compliant. If extended header code pages are used, the WSP server MUST respond with an encoding
version header for each extended header code page that is request by the client and supported by the server.

Theclient MAY save the supported encoding version received from the server response and use it to optimize header
encoding for subsequent requests or session establishments. If the encoding version is provided by means of Client
Provisioning [PROVCONT], the client SHOULD use this information to optimize subsequent requests or session
establishments.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 92(122)

If abinary encoding, not supported by the negotiated encoding version or extended header code page, is received by
the server. Status code 400 (Bad Request) MUST be returned to the client including the supported encoding versions
supported by the server. If the binary encoding is defined in an unsupported header code page, the version number
shall be omitted in the encoding version header in the response, to indicate which requested header code page is not
supported by the server. The client can repeat the request (or re-establish the session with a new connect PDU) using
textual encoding for unsupported headers.

Note: the encoding version is not linked to the WAP release version number (1.1, 1.2, etc) although it might be decided
to increase the encoding version number at each new WAP rel ease.

Note: Older implementations are encouraged to send it to help the differentiation between WSP 1.1 and WSP 1.2
implementations.

8.4.3 Textual Header Syntax

The header definition rulesin this sub-section follow the rules defined in [RFC2616]. When the header is sent in text
format between the WSP peers, the Application-header rulein section 8.4.2.6 shall be used to encode the field name and
field value.

8.4.3.1 Encoding-Verson field
Thefollowing ruleis used to encode Encoding-Version value in text format:

Encoding-version-value = "Encoding-version" ":" [Code-page SP] Version
;Encoding version supported by the peer as defined in section 8.2.4.64

Code-page = 1*2Hex

; Hexadecimal digits identifying the Code-page. If the Code-page is omitted,

; the version value refers to the header code pages reserved for headers specified
; by WAP Forum

Version = Short-integer | Text-version

; Version number as defined in appendix A. The version must be encoded as short-integer if ; ; ;possible.
; The encoding is defined in section 8.4.2.3 by the Version-value rule. If the version to be encoded

; does not fit constraints for a Short-integer, the Text-version rule shall be applied.

Text-version = 1*Digit"."1*Digit

; The first digit contains the major number and the second digit
: contains the minor version number

8.4.4 End-to-end and Hop-by-hop Headers

The classification whether an HTTP header is a Hop-hop-hop or an End-to-end header is defined in [RFC2616]. The
following header(s) defined by WAP Forum are Hop-by-hop headers:

Encoding-version
X-Wap-Tod

All Hop-by-hop headers MUST be listed in the Connection header except for those defined in [RFC2616]. Unsupported
hop-by-hop headers SHOULD beignored.

8.5 Multipart Data

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 93(122)

HTTP/1.1 has adopted the MIME multipart format to transport composite data objects (eg, “ multipart/mixed”). WSP
defines acompact binary form of the MIME multipart entity. Thereisastraightforward translation of both the multipart
entity and the content type. After translation, a“ multipart/mixed” entity becomes an

“ application/vnd.wap.multipart.mixed” entity. Thus, all MIME “multipart/*” content types can be converted into “
application/vnd.wap.multipart.*” content types. No information islost in the translation.

8.5.1 Application/vnd.wap.multipart Format

Header Entries

Figure 31. Application/vnd.wap.multipart For mat

The application/vnd.wap.multipart content type consists of a header followed by 0 or more entries.

8.5.2 Multipart Header

The multipart header format is asfollows:

Table 32. Multipart Header Fields
Name Type Purpose
nEntries Uintvar | The number of entriesin the multipart entity

The nEntriesfield specifies the number of entriesin the multipart entity.

8.5.3 Multipart Entry

The multipart entry format is asfollows:
Table 33. Multipart Entry Fields

Name Type Purpose
HeadersLen Uintvar Length of the ContentType and Headers
fields combined
Datal_en Uintvar L ength of the Data fidd
ContentType | Multiple octets The content type of the data
Headers (HeadersLen — length of The headers
ContentType) octets
Data DatalLen octets The data

The HeadersLen field specifies the length of the ContentType and Header s fields combined.
The DataLen field specifies the length of the Data field in the multipart entry.

The ContentType field contains the content type of the data. It conforms to the Content-Type val ue encoding specified
in section 8.4.2.24, “ Content type field”, above.

The Headersfield contains the headers of the entry.

The Data field contains the data of the entry.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 94(122)

Appendix A Assigned Numbers

This section contains tables of the WSP assigned numbers. The WAP Architecture Group is responsible for
administering the values.Values in tables covered by the version header (Well-Known Parameters, Header Field and
Content Type) MUST be given in a sequential fashion to simplify client version mapping implementation. New entity
MUST be added at the end of any of those tables. When removing an entity in one of those tables, the assigned number
MUST be deprecated and it MUST not be re-used for another entity. If the encoding rules of an entity need to be
changed, anew entity MUST be created.

Table 34. PDU Type Assignments

Name Assigned Number
Reserved 0x00
Connect O0x01
ConnectReply ox02
Redirect 0x03
Reply x4
Disconnect Ox05

Push Ox06
ConfirmedPush 0xQ7
Suspend 0x08
Resume ox09
Unassigned 0x10-0x3F
Get x40
Options (Get PDU) ox41

Head (Get PDU) ox42
Delete (Get PDU) ox43
Trace (Get PDU) x4
Unassigned (Get PDU) Ox45-0x4F
Extended Method (Get PDU) Ox50-0x5F
Post 0x60

Put (Post PDU) Ox61
Unassigned (Post PDU) Ox62-0x6F
Extended Method (Post PDU) OX70-0x7F
Reserved Ox80-OxFF

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Table 35. Abort Reason Code Assignments

Page 95(122)

Name Description Assigned
Number
PROTOERR Protocol error, illegal PDU received OxEO
DISCONNECT Session has been disconnected OxEL
SUSPEND Session has been suspended OxE2
RESUME Session has been resumed OxE3
CONGESTION The peer is congested and can not process the SDU OxE4
CONNECTERR The session connect failed OXE5
MRUEXCEEDED The Maximum Receive Unit size was exceeded OXE6
MOREXCEEDED The Maximum Outstanding Requests was exceeded OxE7
PEERREQ Peer request OxES8
NETERR Network error OxE9
USERREQ User request OxEA
USERRFS User refused Push message. No specific cause, no retries [OXEB
USERPND Push message cannot be delivered to intended OXEC
destination
USERDCR Push message discarded due to resource shortage OXED
USERDCU Content type of Push message cannot be processed OXEE

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Table 36. Status Code Assignments

Page 96(122)

HTTP StatusCode | Description Assigned
Number

none reserved 0x00 to OxOF
100 Continue 0x10
101 Switching Protocols Ox11
200 OK, Success 0x20
201 Created 0x21
202 Accepted 0x22
203 Non-Authoritative Information 0x23
204 No Content 0x24
205 Reset Content 0x25
206 Partial Content 0x26
300 Multiple Choices 0x30
301 Moved Permanently Ox31
302 Moved temporarily 0x32
303 See Other 0x33
304 Not modified ox34
305 Use Proxy 0x35
306 (reserved) 0x36
307 Temporary Redirect Ox37
400 Bad Request - server could not understand request 0x40
401 Unauthorized 0x41
402 Payment required ox42
403 Forbidden — operation is understood but refused 0x43
404 Not Found Ox44
405 M ethod not allowed 0x45
406 Not Acceptable 0x46
407 Proxy Authentication required Oox47
408 Request Timeout 0x48
409 Conflict 0x49
410 Gone Ox4A
411 Length Required 0x4B
112 Precondition failed ox4C
113 Request entity too large 0x4D
14 Request-URI too large Ox4E
415 Unsupported mediatype Ox4F
416 Requested Range Not Satisfiable Ox50
17 Expectation Failed Ox51
500 Internal Server Error 0x60
501 Not Implemented Ox61
502 Bad Gateway 0x62
503 Service Unavailable 0x63
504 Gateway Timeout ox64
505 HTTP version not supported Ox65

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000
Page 97(122)

Table 37. Capability Assignments

Capability Assigned Number
Client-SDU-Size O0x00
Server-SDU-Size Ox01

Protocol Options ox02
Method-MOR 0x03

Push-MOR ox04

Extended Methods 0x05

Header Code Pages 0x06

Aliases ox07

Unassigned 0x08 to Ox7F

Table 38. Well-Known Parameter Assignments

Token Encoding Assigned Number Expected BNF Rulefor Value
Version

Q 11 0x00 Q-value

Charset 11 0x01 Waell-known-charset

Level 11 ox02 Version-value

Type 11 0x03 Integer-value

Name 11 Ox05 Text-string

Filename 11 Ox06 Text-string

Differences 11 ox07 Field-name

Padding 11 0x08 Short-integer

Type (when used as 12 0x09 Constrained-encoding

parameter of Content-Type:
multipart/rel ated)

Start (with multipart/rel ated) 12 Ox0A Text-string
Start-info (with 12 oxoB Text-string
multipart/rel ated)

Comment 13 ox0C Text-string

Domain 13 Ox0D Text-string
Max-Age 13 OXOE Delta-seconds-value
Path 13 OxOF Text-string

Secure 13 0x10 No-value

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 98(122)

Table 39. Header Field Name Assignments

Name Encoding | Assigned Number
Version
Accept 11 Oox00
Accept-Charset" 11 Ox0L
Accept-Encoding’ 11 ox02
Accept-Language 11 0x03
Accept-Ranges 11 Ox04
Age 11 0x05
Allow 11 Ox06
Authorization 11 0x07
Cache-Control* 11 Ox08
Connection 11 ox09
Content-Base 11 OxO0A
Content-Encoding 11 ox0B
Content-L anguage 11 0x0C
Content-L ength 11 OxGD
Content-L ocation 11 OxOE
Content-MD5 11 OxOF
Content-Range' 11 0x10
Content-Type 11 Ox11
Date 11 0x12
Etag 11 0x13
Expires 11 0x14
From 11 0x15
Host 11 0x16
If-Modified-Since 11 Oox17
If-Match 11 0x18
If-None-Match 11 0x19
If-Range 11 Ox1A
If-Unmaodified-Since 11 ox1B
Location 11 ox1C
Last-Modified 11 ox1D
Max-Forwards 11 Ox1E
Pragma 11 Ox1F
Proxy-Authenticate 11 0x20
Proxy-Authorization 11 0x21
Public 11 0x22
Range 11 0x23
Referer 11 0x24
Retry-After 11 0x25
Server 11 0x26
Transfer-Encoding 11 ox27
Upgrade 11 0x28
User-Agent 11 0x29
Vay 11 Ox2A
Via 11 ox2B
Warning 11 ox2C
WWW-Authenticate 11 ox2D
Content-Disposition 11 Ox2E
X-Wap-Application-1d 12 Ox2F

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 99(122)

Name Encoding | Assigned Number
Version
X-Wap-Content-URI 12 0x30
X-Wap-Initiator-URI 12 Ox31
Accept-Application 12 0x32
Bearer-Indication 12 0x33
Push-Flag 12 x4
Profile 12 0x35
Profile-Diff 12 0x36
Profile-Warning 12 Oox37
Expect 13 X33
TE 13 0x39
Trailer 13 Ox3A
Accept-Charset 13 0x3B
Accept-Encoding 13 ox3C
Cache-Control 13 0x3D
Content-Range 13 Ox3E
X-Wap-Tod 13 OX3F
Content-I1D 13 0x40
Set-Cookie 13 ox41
Cookie 13 0x42
Encoding-Version 13 ox43

(2): These numbers have been deprecated and should only be supported for backward compatibility purpose

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Table 40. Content Type Assignments

Page 100(122)

Content-Type Encoding Assigned
Version Number
[11 0x00
text/* 11 0x01
text/html 11 ox02
text/plain 11 ox03
text/x-hdml 11 ox04
text/x-ttml 11 O0x05
text/x-vCalendar 11 0x06
text/x-vCard 11 ox07
text/vnd.wap.wml 11 0x08
text/vnd.wap.wmlscript 11 ox09
text/vnd.wap.channel 11 OX0A
Multipart/* 11 Ox0B
Multipart/mixed 11 ox0C
Multipart/form-data 11 Ox0D
Multipart/byteranges 11 OxOE
multipart/alternative 11 OxOF
application/* 11 0x10
application/java-vm 11 Ox11
application/x-www-form-urlencoded 11 0x12
application/x-hdmlc 11 0x13
application/vnd.wap.wmic 11 0x14
application/vnd.wap.wmlscriptc 11 0x15
application/vnd.wap.channelc 11 0x16
application/vnd.wap.uaprof 11 Oox17
application/vnd.wap.wtls-ca-certificate 11 0x18
application/vnd.wap.wtls-user-certificate 11 0x19
application/x-x509-ca-cert 11 Ox1A
application/x-x509-user-cert 11 0x1B
image/* 11 ox1C
image/gif 11 O0x1D
image/jpeg 11 Ox1E
image/tiff 11 Ox1F
image/png 11 0x20
image/vnd.wap.wbmp 11 ox21
application/vnd.wap.multipart.* 11 0x22
application/vnd.wap.multipart.mixed 11 0x23
application/vnd.wap.multipart.form-data 11 Ox24
application/vnd.wap.multipart.byteranges 11 0x25
application/vnd.wap.multipart.alternative 11 0x26
application/xm 11 0ox27
text/xml 11 0x28
application/vnd.wap.wbxml 11 0x29
application/x-x968-cross-cert 11 Ox2A
application/x-x968-ca-cert 11 0x2B
application/x-x968-user-cert 11 ox2C
text/vnd.wap.si 11 ox2D

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000
Page 101(122)

Content-Type Encoding Assigned
Version Number
application/vnd.wap.sic 12 Ox2E
text/vnd.wap.sl 12 Ox2F
application/vnd.wap.sic 12 0x30
text/vnd.wap.co 12 Ox31
application/vnd.wap.coc 12 0x32
application/vnd.wap.multipart.related 12 0x33
application/vnd.wap.sia 12 x4
text/vnd.wap.connectivity-xml 13 0x35
application/vnd.wap.connectivity-wixml 13 0x36
Unassigned X37-0x7F

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Page 102(122)

Table 41. I1SO 639 Language Assignments
Language Short Assigned L anguage Short Assigned
Number Number
Afar aa 0x01 M aori mi Ox47
Abkhazian ab ox02 M acedonian nk 0x48
Afrikaans af Ox03 Malayalam m 0x49
Amharic am x4 Mongolian mn Ox4A
Arabic ar 0x05 Moldavian no 0x4B
Assamese as 0x06 Marathi nr ox4C
Aymara ay Oox07 Malay ms 0x4D
Azerbaijani az 0x08 Maltese mt Ox4E
Bashkir ba 0x09 Burmese my Ox4F
Byelorussian be Ox0A Nauru na Ox81
Bulgarian bg Ox0B Nepali ne Ox51
Bihari bh oxoC Dutch nl 0x52
Bidama bi Ox0D Norwegian no Ox53
Bengali; Bangla bn OxOE Occitan oc ox54
Tibetan bo OxOF (Afan) Oromo om Ox55
Breton br 0x10 Oriya or OX56
Catalan ca Ox11 Punjabi pa Ox57
Corsican (] 0x12 Polish po 0x58
Czech cs 0x13 Pashto, Pushto ps Ox59
Welsh cy 0x14 Portuguese pt OXBA
Danish da 0x15 Quechua qu Ox5B
German de 0x16 Rhaeto-Romance rm ox8C
Bhutani dz Ox17 Kirundi m Ox5D
Greek el 0x18 Romanian ro Ox5E
English en 0x19 Russian ru OX5F
Esperanto €0 Ox1A Kinyarwanda w O0x60
Spanish es 0x1B Sanskrit sa Ox61
Estonian et ox1c Sindhi sd ox62
Basque eu 0x1D Sangho sg 0x63
Persian fa OX1E Serbo-Croatian sh oxe4
Finnish fi Ox1F Sinhalese Si 0x65
Hji fj 0x20 Slovak sk 0x66
Faeroese fo 0x82 Slovenian sl ox67
French fr 0x22 Samoan sm 0x63
Frisian fy ox83 Shona sn Ox69
Irish ga ox24 Somali SO OX6A
Scots Gadlic gd 0x25 Albanian sq Ox6eB
Gdlician gl 0x26 Serbian Sr ox6C
Guarani gn ox27 Siswati SsS Ox6D
Gujarati gu 0x28 Sesotho st OX6E
Hausa ha 0x29 Sundanese su Ox6F
Hebrew (formerly iw) he Ox2A Swedish SV 0x70
Hindi hi 0x2B Swahili Sw 0x71
Croatian hr ox2C Tamil ta 0x72
Hungarian hu ox2D Telugu te Ox73
Armenian hy Ox2E Taik tg 0x74
Interlingua ia 0ox84 Thai th OX75
Indonesian (formerly in) | id 0x30 Tigrinya ti OX76

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 103(122)

Language Short Assigned Language Short Assigned
Number Number

Interlingue ie Ox86 Turkmen tk ox77
I nupiak ik 0x87 Tagalog tl 0x78
Icelandic is 0x33 Setswana tn 0x79
Italian it ox34 Tonga to OX7A
I nuktitut iu 0x89 Turkish tr Ox7B
Japanese ja 0x36 Tsonga ts Ox7C
Javanese jw Ox37 Tatar tt OX7D
Georgian ka 0x38 Twi tw OX7E
Kazakh kk 0x39 Uighur ug OX7F
Greenlandic kl Ox8A Ukrainian uk Ox50
Cambodian km 0x3B Urdu ur 0x21
Kannada kn 0x3C Uzbek uz 0x23
Korean ko 0x3D Vietnamese Vi Ox2F
Kashmiri ks OX3E Volapuk VO 0x85
Kurdish ku Ox3F Wolof WO 0x31
Kirghiz ky 0x40 Xhosa xh 0x32
Latin la Ox8B Yiddish (formerly ji) yi 0x83
Lingaa In 0x42 Y oruba yo 0x35
Laothian lo 0x43 Zhuang za Ox3A
Lithuanian It 0x44 Chinese zh ox41
Latvian, L ettish Iv 0x45 Zulu 2u Ox5C
Malagasy ng Ox46

Table 42. Character Set Assignment Examples

The character set encodings are done using the MIBEnum values assigned by the IANA in theregistry availablein
<URL.:ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets>. The following table provides just a quick reference:

Character set Assigned Number IANA MIBEnum value
bigs OxO7EA 2026
iS0-10646-ucs-2 OXO3E8 1000

is0-8859-1 ox04 4

iS0-8859-2 0x05 5

is0-8859-3 0x06 6

is0-8859-4 ox07 7

is0-8859-5 0x08 8

is0-8859-6 0x09 9

is0-8859-7 Ox0A 10

is0-8859-8 0x0B 11

is0-8859-9 0x0C 12

shift JIS Ox11 17

Us-ascii 0x03 3

utf-8 Ox6A 106
gsm-default-al phabet Not yet assigned Not yet assigned

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 104(122)

Appendix B Header encoding examples
This section contains someillustrative examples for how header encoding shall be applied.
B.1 Header values

The header values are given in HTTP/1.1 syntax together with the corresponding WSP header encoded octet stream.

B.1.1 Encoding of primitive value

HTTP/1.1 header: Accept: application/vnd.wap.wmlc
Encoded header:
0x80 -- Well-known field name ” Accept” coded as a short integer
x4 -- Well-known media” application/vnd.wap.wmlc” coded as a short integer

B.1.2 Encoding of structured value

HTTP/1.1 header: Accept-Language: en;q=0.7

Encoded header:
ox83 -- Well-known field name ” Accept-L anguage”
ox02 -- Value length, general encoding must be applied.
0x99 -- Well-known language " English”
ox47 -- Quality factor 0.7 (0.7 * 100 + 1 = 0x47)

B.1.3 Encoding of well-known list value

HTTP/1.1 header: Accept-Language: en, sv

Encoded header:
ox83 -- Well-known field name " Accept-L anguage”
x99 -- Well-known language " English”
ox83 -- Well-known field name " Accept-L anguage”
OxFO -- Well-known language ” Swedish”

B.1.4 Encoding of date value

HTTP/1.1 header: Date: Thu, 23 Apr 1998 13:41:37 GMT
Encoded header:
0x92 -- Well-known field name " Date”
oxo4 -- Length of multi-octet integer
0x35 -- 4 date octets encoded as number of seconds from 1970-01-01,
Ox3f -- 00:00:00 GMT. The most significant octet shall befirst.
0x45 -
ox11 -

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 105(122)

B.1.5 Encoding of Content range

HTTP/1.1 header: Content-range: bytes 0-499/1025
Encoded header:
0x90 -- Well-known field name ” Content-range”
ox03 -- Valuelength
(0°00] -- First octet position
0x88 -- Entity length
ox01 -- Entity length

B.1.6 Encoding of a new unassigned token

HTTP/1.1 header: Accept-ranges. new-range-unit

Encoded header:
oxs84 -- Well-known field name ” Accept-ranges’
n”e’w’ra’n’g’e’-"u'n”i’ 't 0x00 -- Token coded as a null terminated text string

B.1.7 Encoding of a new unassigned header field name

HTTP/1.1 header: X-New-header: foo

Encoded header:
XN e'w-"hea’d’ e’r 0x00 -- Field name coded as anull terminated text string
'f’0"" 0’ Ox00 -- Field value coded as null terminated text string

B.1.8 Encoding of a new unassigned list-valued header

HTTP/1.1 header: X-New-header: foo, bar

Encoded header:
XUNTE'w-Thea d e r 0x00 -- Field name coded as anull terminated text string
f'070”’,) "b’d’r 0x00 -- Field value coded as null terminated text string

B.2 Shift header code pages

This section illustrates how header code pages can be shifted.

B.2.1 Shift sequence

Shift to header code page 64

Encoded shift sequence:
OX7F -- Shift delimiter
0x40 -- Page identity

B.2.2 Short cut

Shift to header code page 16
Encoded shift sequence:
0x10 -- Short cut shift delimiter

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 106(122)

Appendix C Implementation Notes

The following implementation notes are provided to identify areas where implementation choices may impact the
performance and effectiveness of the WSP protocols. These notes provide guidance to implementers of the protocols.

C.1 Confirmed Push and Delayed Acknowledgements

One of the features of the Wireless Transaction Protocol is delayed acknowledgement of transactions, which may
significantly reduce the number of messages sent over the bearer network. However, this feature may also result in poor
throughput for push traffic, especialy if the server waits for a confirmed push to be acknowledged before starting the
next confirmed push transaction. Use of delayed acknowledgements will make the push cycle to take at |east one round-
trip time plus the duration of the delayed acknowledgement timer. This effect will be even more pronounced when the
bearer network has along round-trip delay, since then WTP will typically use alarger delayed acknowledgement timer
value.

The session layer protocol does not address thisissue, because the WTP service interface does not include a meansto
effect the delayed acknowledgement timer. Rather, the control of that timer is a matter local to the implementation. If the
performance implications are considered significant, an implementation should provide the service user with meansto
specify the largest acceptable acknowledgement delay for each push transaction. Forcing the delayed
acknowledgement timer always to have avalue that is small enough to provide good push throughput is not a good
solution. Thiswill prevent the remaining WTP message traffic associated with method requests from being optimised,
and the number of messages sent over the air-interface will be doubled.

C.2 Handling of Race Conditions

Connection-mode WSP is layered on top of the service provided by the Wireless Transaction Protocol, which does not
guarantee that transaction invocations and results arrive to the peer in the same order as in which the service user has
submitted them. Thisresultsin certain race conditions, if method or push transactions are initiated while the session
creation procedure has not yet been fully completed. In order to reduce protocol complexity WSP does not attempt to
handle all of these gracefully, but in many cases simply chooses to abort the transaction caught in the race condition.
In such a case the service user should simply retry the transaction request.

This policy was chosen, since these race conditions were not considered frequent enough to make the cost of the
additional protocol complexity worthwhile. However, if the problem is considered significant, it can still be alleviated
using certain implementation strategies. First of al, if session management, method and push transactions are initiated
so close together that the race conditions are possible, then WTP concatenation procedures should be capabl e of
combining the resulting PDUs into the same transport datagram. WTP should al so handle the concatenation and
separation in such amanner that the order of operationsis preserved, if the resulting PDUs are carried by the same
datagram. Thiswill ensure that the state machine of WSP will not need to react to primitives related to method and push
transactions before it has had a chance to complete creation of the session.

If an implementation wants to prevent completely these kinds of race conditions, it can postpone the initiation of
method and push transactions until the session creation processis fully complete—thisis quite legal asfar asthe
protocol peer is concerned. However, the resulting user experience may be considered unacceptably poor, if the used
bearer has avery long round-trip time.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 107(122)

C.3 Optimising Session Disconnection and Suspension

The protocol requires all pending method and push transactions to be aborted, when a peer starts disconnecting or
suspending a session. Thismay result in aburst of very short messages containing transaction abort PDUs being sent
in addition to the actual Disconnect or Suspend PDU. However, all these PDUs are so short, that typically it will be
possible to concatenate them into a single transport datagram. An implementation should ensure that it is able to
concatenate the PDUs at the WTP level at least in this special case, so that the impact on the network will be minimised.

C.4 Decoding the Header Encodings

WSP defines compact binary encodings for HTTP/1.1 headers. One method used to achieve thisis the use of context
information to define, how a particular encoding is supposed to be interpreted, instead of encoding it explicitly. For
instance, the header field name implies the format of the header field value. In astructured value, the position of each
item impliesitstype, even if the binary encodings used to represent the values of different types may in fact be identical.
The most obvious method, which an implementation can use to support this, is using atop-down strategy when parsing
the header encoding.

C.5 Adding Well-known Parameters and Tokens

The header encoding defined by WSP imposes a strict syntax on the header field values. Within it only such values that
have been assigned well-known binary identitiesin advance can be encoded very compactly. If an application turns out
to use extensively token values and especially parameters, which have not been foreseen, the overhead of the required
textual encoding may eventually be considered prohibitive. If updating the WSP specification so that a new protocol
version is produced is not a viable approach, then more efficient encodings can still be implemented within the WSP
framework. The application may introduce an extension header code page, which redefines the syntax for the appropriate
standard HTTP/1.1 header so that the needed new well-known values are recognised. The application peers can then
use WSP capability negotiation to agree on using this new code page. Once this has been done, the application can
modify its header processing so, that the header defined on the new code page will be used instead of the standard
header with the same name. The cost of shifting to the new code page should be only one extra octet, which should be
more than offset by the more compact value encoding.

C.6 Use of Custom Header Fields

Client or server implementations may make use of custom header fields, either as part of the header data supplied in a
WSP request or response message, or as data supplied in "Acknowledgement Headers" (section 8.2.3.4). In these
cases, it isimportant to choose field names that will be unambiguous and will not "collide" with other implementations.
To avoid such problems, custom header field names should be created according to the guidelines specified by the
WAP Wireless Interim Naming Authority (WINA), and registered with the authority as a means of public record. These
measures will avoid name collision with standard field names, as well as custom header fields that may be defined in
other implementations.

When using custom header fields, implementers should provide an extension header code page to allow compact
encoding of these new field names and values (see section C.5). Use of extension code pagesis strongly recommended
for Acknowledgement Headers, since no standard header field names have been defined for them. Because
Acknowledgement headers are only transferred between WSP peers, the negotiation of the extension code page can be
performed at the same stage as the negotiation of the use of Acknowledgement Headers. Extension header code pages
should al'so be named in accordance with WINA guidelines, and registered with the authority for public reference.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 108(122)

Client or server implementations should ignore custom header fields that they do not recognize. Gateway
implementations that bridge between WSP and HT TP should pass any unrecognized HT TP header fields which are not
specifically defined to be “hop-by-hop” fields.

Similarly avalue inan accept header that is not recognized by the receiver should simply be ignored. If thisleavesthe
server without any accepted values the server can chose to either send areport as “Not Acceptable” (406) or return
some generic content it expects the client to be able to handle.

In case the custom header clearly breaks the protocol, such asif using a non-negotiated code page, then the server
should return a“Bad Request” (400) error to the client.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 109(122)

Appendix D Static Conformance Requirement

D.1 WSP Client/Server Mode Static Conformance Requirement

Connectionl ess Connection-Oriented
Client o o
Server M M

(1): Notethat the client MUST implement either one of the two modes (ConnnectionL ess or Connection-Oriented) but
no specific mode is mandatory.

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

D.11

Requirement

WSP as Connection-Oriented Client Static Conformance

Page 110(122)

Identifier

Function

PDU / Capability

Ref

M andatory/Optional

WSP_CO_C001

WSP_CO_C002

WSP_CO_C003

Session Creation

Connect PDU

6.33.1
6.34
7121
715
716.1
8221

M

ConnectReply PDU

7121
715

716.1
8222

Redirect PDU

7121
715

716.1
8223

WSP_CO_C004

WSP_CO_C005

Capabilities
Negotiation

Connect PDU

6.3.2
6.331
7.15
7161
8221
8.3

ConnectReply PDU

7.15
7161
8222
8.3

WSP_CO_C006

Session Termination

Disconnect PDU

6.3.3.2
7121
715

7161
8224

WSP_CO_C007

WSP_CO_C008

Session Suspend
and Resume

Suspend PDU

6.3.3.3
7122
715

7161
8251

Resume PDU

6.334
7122
715

716.1
825.2

WSP_CO_C009

Push

Push PDU

6.3.3.9
7124
8241

WSP_CO_C010

Confirmed Push

ConfirmedPush
PDU

6.3.3.10
63311
6.34
7125
715

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 111(122)

Mandatory/Optional

7.16.3
8241

WSP_CO_C011

Ack. Headers

Exitinfo

6.3.3.7
6.3.3.10
7.1.6.2
7.1.6.3
8242

WSP_CO_C012

Extended M ethods

Proprietary
M ethods

6.32.2
8324

WSP_CO_C013

WSP CO _C014

Header encoding

Default page

84
Table 39

Extended

8325

WSP_CO_C015

Aliases

6.32.2
8.3.2.6

WSP_CO_C016

Method GET

Get PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
7.15

7.1.6.2
8231

WSP_CO_C017

Reply PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
7.15

7.16.2
8233

WSP_CO_C018

Method POST

Post PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
715

7.16.2
8232

WSP_CO_C019

Reply PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
715

7.1.6.2
8233

WSP_CO_C020

Method DELETE

Get PDU

6.3.3.6
6.3.3.7
6.3.38
6.34

7123
715

7.1.6.2

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 112(122)

Mandatory/Optional

8231

WSP_CO_C021

Reply PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
715

7.1.6.2
8233

O

WSP_CO_C022

Method HEAD

Get PDU

6.3.3.6
6.3.3.7
6.3.38
6.34

7123
715

7.1.6.2
8231

WSP_CO_C023

Reply PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
715

7.1.6.2
8233

WSP_CO_C024

Method OPTION

Get PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
715

7162
8231

WSP_CO_C025

Reply PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
715

7162
8233

WSP_CO_C026

Method TRACE

Get PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
7.15

7.1.6.2
8231

WSP_CO_C027

Reply PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 113(122)

Mandatory/Optional

7123
715

7.16.2
8233

WSP_CO_C028

Method PUT

Post PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
715

7.16.2
8232

WSP_CO_C029

Reply PDU

6.3.3.6
6.3.3.7
6.3.38
6.34

7123
715

7.1.6.2
8233

WSP_CO_C030

Multipart Data

Post PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
715

7.1.6.2
8232

WSP_CO_C031

Reply PDU

6.3.3.6
6.3.3.7
6.3.3.8
6.34

7123
715

7162
8233

WSP_CO_C032

Method Abort

N/A

6.3.3.2
6.3.3.3
6.3.3.8

WSP_CO_C033

Push Abort

N/A

6.33.10
6.33.11

Ol

WSP_CO_C034

Encoding Version
Framework

N/A

84.1
84.2.70

M

(1): If confirmed push isimplemented then push abort MUST be implemented too.

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

D.1.2

Requirement

Page 114(122)

WSP as Connection-Oriented Server Static Conformance

Identifier

Function

PDU / Capability

Ref

Mandatory/Optional

WSP_CO_S001

WSP_CO_S002

WSP_CO_S003

Session Creation

Connect PDU

6.33.1
634
7121
715
7164
8221

M

ConnectReply PDU

7121
715

7164
8222

Redirect PDU

7121
715

7164
8223

WSP_CO_S004

WSP_CO_S005

Capabilities
Negotiation

Connect PDU

6.3.2
6331
6.334
715
7.1.64
8221
8.3

ConnectReply PDU

715
7164
8222
8.3

WSP_CO_S006

Session
Termination

Disconnect PDU

6.3.32
7121
7.15

7164
8224

WSP_CO_S007

WSP_CO_S008

Session Suspend
and Resume

Suspend PDU

6.3.33
7122
7.15

7164
8251

Resume PDU

6334
7122
715

7164
825.2

WSP_CO_S009

Push

Push PDU

6.3.39
7124
8241

WSP_CO_S010

Confirmed Push

ConfirmedPush PDU

6.3.3.10
63311
634
7125

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 115(122)

Identifier

Function

PDU / Capability

Ref

Mandatory/Optional

7.15
7.1.6.6
8241

WSP_CO_S011

Ack. headers

Exitinfo

6.337
6.33.10
7165
7.1.6.6
8242

WSP_CO_S012

Extended M ethods

Proprietary Methods

6.32.2
8324

WSP_CO_S013

WSP_CO_S014

Header encoding

Default page

6322
84
Table 39

Extended

6322
8325

WSP_CO_S015

Aliases

6322
8.3.2.6

WSP_CO_S016

Method GET

Get PDU

6.3.36
6.337
6.3.38
634

7123
715

7165
8231

WSP_CO_S017

Reply PDU

6.3.3.6
6.337
6.3.38
634

7123
715

7165
8233

WSP_CO_S018

Method POST

Post PDU

6.3.3.6
6.337
6.3.38
6.34

7123
715

7165
8232

WSP_CO_S019

Reply PDU

6.3.36
6.337
6.3.38
6.34

7123
715

7165
8233

WSP_CO_S020

Method DELETE

Get PDU

6.3.3.6
6.33.7
6.3.3.8
6.34

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 116(122)

Identifier

Function

PDU / Capability

Ref

Mandatory/Optional

7123
7.15

7165
8231

WSP_CO_S021

Reply PDU

6.3.36
6.337
6.3.38
6.34

7123
715

7165
8233

WSP_CO_S022

Method HEAD

Get PDU

6.3.3.6
6.33.7
6.3.3.8
6.34

7123
715

7165
8231

WSP_CO_S023

Reply PDU

6.3.3.6
6.3.3.7
6.3.3.8
634

7123
715

7165
8233

WSP_CO_S024

Method OPTION

Get PDU

6.3.3.6
6.33.7
6.3.38
634

7123
715

7165
8231

WSP_CO_S025

Reply PDU

6.3.3.6
6.337
6.3.38
634

7123
715

7165
8233

WSP_CO_S026

Method TRACE

Get PDU

6.3.3.6
6.337
6.3.38
634

7123
715

7165
8231

WSP CO_S027

Reply PDU

6.3.3.6

)

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 117(122)

Identifier

Function

PDU / Capability

Ref

Mandatory/Optional

6.33.7
6.3.38
6.34

7123
715

7165
8233

WSP_CO_S028

Method PUT

Post PDU

6.3.36
6.337
6.3.38
6.34

7123
715

7165
8232

WSP_CO_S029

Reply PDU

6.3.3.6
6.33.7
6.3.3.8
6.34

7123
715

7165
8233

WSP_CO_S030

Multipart Data

Post PDU

6.3.3.6
6.3.3.7
6.3.3.8
634

7123
715

7165
8232

WSP_CO_S031

Reply PDU

6.3.3.6
6.33.7
6.3.38
634

7123
715

7165
8233

WSP_CO_S032

Encoding Version
Framework

N/A

84.1
84.2.70

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000
Page 118(122)

D.1.3 WSP as Connection-Less Client Static Conformance Requirement

| dentifier Function PDU / Capability Ref M andatory/Optional

WSP_CL_C001 Push Push PDU 6.4.23 0]
6.34
7.2
8241
WSP_CL_C002 Header encoding | Default page 84 M
Table39
WSP_CL_C003 Method GET Get PDU 64.2.1 M
64.2.2
64.3
72
8231
WSP_CL_C004 Reply PDU 64.2.1 M
64.2.2
64.3
72
8.2.3.3
WSP_CL_C005 Method POST Post PDU 64.2.1 M
64.2.2
64.3
72
8.2.3.2
WSP_CL_C006 Reply PDU 64.2.1 M
64.2.2
64.3
72
8.2.3.3
WSP_CL_C007 Method DELETE | Get PDU 64.2.1 @]
64.2.2
6.4.3
72
8.2.3.1
WSP_CL_C008 Reply PDU 6421 0]
6.4.22
6.4.3
7.2
8233
WSP_CL_C009 Method HEAD Get PDU 6421 0]
6.4.22
6.4.3
7.2
8231
WSP_CL_C010 Reply PDU 6421 0]
6.4.22
6.4.3
7.2
8233
WSP_CL_C011 Method OPTION | Get PDU 64.2.1 @]
64.2.2
6.4.3

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000
Page 119(122)

I dentifier Ref Mandatory/Optional
72
8231
WSP_CL_C012 Reply PDU 64.2.1 @]
64.2.2
64.3
72
8.2.3.3
WSP_CL_C013 Method TRACE Get PDU 64.2.1 @]
64.2.2
6.4.3
72
8.2.3.1
WSP_CL_C014 Reply PDU 6421 0]
6.4.22
6.4.3
7.2
8233
WSP_CL_C015 Method PUT Post PDU 6421 0]
6.4.22
6.4.3
7.2
8232
WSP_CL_C016 Reply PDU 6421 0]
6.4.22
6.4.3
7.2
8233
WSP_CL_C017 Multipart Data Post PDU 64.2.1 @]
64.2.2
64.3
72
8.2.3.2
WSP_CL_C018 Reply PDU 64.2.1 @]
64.2.2
64.3
72
8.2.3.3
WSP_CL_C019 Encoding Version | N/A 84.1 M
Framework 84270

D.1.4 WSP as Connection-Less Server Static Conformance Requirement

I dentifier Function PDU / Capability Ref M andatory/Optional

WSP_CL_S001 Push Push PDU 6423 0]
6.34
7.2
8241
WSP_CL_S002 Header encoding | Default page 84 M
Table39

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

Approved Version 4-May-2000

Page 120(122)

Identifier

Ref

Mandatory/Optional

WSP_CL_S003

Method GET

Get PDU

6421
6422
643
72
8231

M

WSP_CL_S004

Reply PDU

6421
6422
643
72
8233

WSP_CL_S005

Method POST

Post PDU

64.2.1
6.4.2.2
6.4.3
12
8232

WSP_CL_S006

Reply PDU

6421
64.2.2
6.4.3
712
8233

WSP_CL_S007

Method DELETE

Get PDU

6421
64.2.2
6.4.3
72
8231

WSP_CL_S008

Reply PDU

6421
64.2.2
6.4.3
712
8233

WSP_CL_S009

Method HEAD

Get PDU

6421
6422
643
72
8231

WSP_CL_S010

Reply PDU

6421
6422
643
72
8233

WSP_CL_S011

Method OPTION

Get PDU

6421
6422
643
72
8231

WSP_CL_S012

Reply PDU

6421
6422
643
72
8233

WSP_CL_S013

Method TRACE

Get PDU

6421
6.4.2.2
6.4.3

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 121(122)

Identifier

Ref

Mandatory/Optional

72
8231

WSP_CL_S014

Reply PDU

6421
6422
643
72
8233

WSP_CL_S015

Method PUT

Post PDU

64.2.1
6.4.2.2
6.4.3
12
8232

WSP_CL_S016

Reply PDU

6421
64.2.2
6.4.3
712
8233

WSP_CL_S017

Multipart Data

Post PDU

6421
64.2.2
6.4.3
72
8232

WSP_CL_S018

Reply PDU

6421
64.2.2
6.4.3
712
8233

WSP_CL_S019

Encoding Version
Framework

841
84270

© Copyright Wireless Application Protocol Forum, Ltd. 1999

All rights reserved.

Approved Version 4-May-2000

Page 122(122)

Appendix E History and Contact

Document history

Date Status Comment
Minor corrections from previous version. Votedto " Proposed”
A
4May 2000 pproved on May 23 2000.
. Incorporated approved CRs from Sydney, Rome and Miami as
2 D . .
28 April 2000 reft well asthe Encoding-Version CR.
5 November 1999 Final Incorporated Corrigendum WPG-WSP-5.
Incorporated Corrigendum WPG-WSP-3 and Corrigendum
A 1 D .
9 August 1999 raft WPG-WSP-4, approved CRs from San Francisco and the Push
CRs agreed uponin July.
28 May 1999 Final Added WSP-UP-29-Mar-1999/1 approved in Montreux and
considered critical to WAP 1.1
9 February 1999 Draft Incorporated Corrigendum WPG-WSP-1 and Corrigendum
WPG-WSP-2 plus the CR approved in Forth Worth
30 April 1998 Final Incorporated comments from conference calls.
Contacts:

WPG Chair: Owen Sullivan, WorldZap: owen.sullivan@worldzap.com

WSP Editor: Matthieu L achance, Phone.com, Inc.: |lachance@corp.phone.com

© Copyright Wireless Application Protocol Forum, Ltd. 1999
All rights reserved.

